
www.manaraa.com

 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering & Applied Science 

Department of Mechanical Engineering and Materials Science 

 

Dissertation Examination Committee: 

Philip Bayly, Chair  

Susan Dutcher 

Ruth Okamoto 

David Peters 

Jin-Yu Shao 

Jessica Wagenseil 

 

 

Probing Mechanical Forces in Flagella by Manipulation of  

Media Viscosity and Axonemal Structure 

by 

Kate Wilson 

 

 

A dissertation presented to the  

Graduate School of Arts & Sciences 

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

May 2015 

St. Louis, Missouri 



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3687959

Published by ProQuest LLC (2015).  Copyright in the Dissertation held by the Author.

UMI Number:  3687959



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2015, Kate Wilson



www.manaraa.com

ii 

 

Table of Contents 
List of Figures ................................................................................................................................. v 

List of Tables ................................................................................................................................ vii 

Acknowledgments........................................................................................................................ viii 

Abstract ........................................................................................................................................... x 

Chapter 1 ......................................................................................................................................... 1 

Introduction: An Overview of Flagella Structure and Function ..................................................... 1 

1.1 Cilia and Flagella are Important Biological Motors......................................................... 1 

1.1.1 Normal Function ................................................................................................................... 1 

1.1.2 Dysfunction ........................................................................................................................... 2 

1.2  Chlamydomonas reinhardtii as a Model Organism ......................................................... 4 

1.3  Details of Shape and Structure ......................................................................................... 6 

1.3.1  Structure of the Flagellar Axoneme ...................................................................................... 7 

1.3.2  Active Elements of the Flagellar Axoneme .......................................................................... 9 

1.4  Function: How do Flagella Generate Motion? ............................................................... 10 

1.5  Mathematical Modeling of Flagellar Beating ................................................................ 11 

1.6 Dissertation Organization ............................................................................................... 13 

Chapter 2 ....................................................................................................................................... 16 

Experimental Methods for Characterization of the Flagellar Waveform ..................................... 16 

2.1 Introduction and Motivation........................................................................................... 16 

2.2 Cell Culture and Genetics .............................................................................................. 16 

2.3 Optical Microscopy Recordings ..................................................................................... 18 

2.4 Viscosity ......................................................................................................................... 18 

2.5 Image Processing............................................................................................................ 18 

2.6 Waveform Analysis ........................................................................................................ 21 

2.6 Post-Processing .............................................................................................................. 25 

Chapter 3 ....................................................................................................................................... 28 

The Effects of Viscosity on Flagellar Waveform in Normal and Mutant Flagella ....................... 28 

3.1 Introduction and Motivation........................................................................................... 28 

3.2 Cell Body Parameters ..................................................................................................... 29 



www.manaraa.com

iii 

 

3.3 Waveform Parameters .................................................................................................... 35 

3.4 Discussion ...................................................................................................................... 45 

Chapter 4 ....................................................................................................................................... 49 

Methods for Mathematical Modeling of Flagella Motion ............................................................ 49 

4.1 Introduction and Motivation........................................................................................... 49 

4.2 Background .................................................................................................................... 49 

4.3 General Equations of Flagella Motion ........................................................................... 50 

4.2.1 Kinematics .......................................................................................................................... 51 

4.2.2 Equilibrium Conditions ....................................................................................................... 52 

4.2.3 Constitutive Relations ......................................................................................................... 53 

4.2.4 Derivation Steps .................................................................................................................. 54 

4.3 Discussion ...................................................................................................................... 56 

Chapter 5 ....................................................................................................................................... 58 

Unstable Modes in a Model of Sliding-Controlled Dynein Activity ............................................ 58 

5.1 Introduction and Motivation........................................................................................... 58 

5.2 Linearized Equation of Motion and Shear Force ........................................................... 59 

5.3 Eigenvalue Problem ....................................................................................................... 61 

5.4 Solution to the Eigenvalue Problem ............................................................................... 65 

5.5 Results and Stability ....................................................................................................... 67 

5.5.1 Case 1: Finite Sliding Compliance at the Base ................................................................... 67 

5.5.2 Case 2: No sliding at the base ............................................................................................. 73 

5.6 Discussion ...................................................................................................................... 77 

Chapter 6 ....................................................................................................................................... 79 

Mathematical Formulation of the Geometric Clutch Hypothesis ................................................. 79 

6.1 Introduction and Motivation........................................................................................... 79 

6.2 Model: Two Doublet Pairs ............................................................................................. 80 

6.3 Doublet Pair Interactions ................................................................................................ 82 

6.3.1 Equilibrium Equations ........................................................................................................ 82 

6.3.2 Inter-Doublet Separation and Transverse Force ................................................................. 83 

6.3.3 Cross-Bridge Attachment and Dynein Activity .................................................................. 86 

6.4 Opposing Doublet Pairs ................................................................................................. 89 

6.4.1 Inter-Doublet Equations: Two Doublet Model ................................................................... 91 



www.manaraa.com

iv 

 

6.4.2 Load Dynamics of Inter-Doublet Separation ...................................................................... 92 

6.5 Stability Analysis ........................................................................................................... 96 

6.5.2 Eigenvalue Problem for the GC Model ............................................................................... 97 

6.5.3 Numerical Eigenanalysis and Simulation ........................................................................... 99 

6.5.4 Unstable Modes of the GC Model .................................................................................... 100 

6.6 Large Amplitude, Nonlinear Flagella Oscillations ...................................................... 102 

6.7 Discussion .................................................................................................................... 104 

Chapter 7 ..................................................................................................................................... 107 

Discussion and Future Work ....................................................................................................... 107 

7.1 Summary ...................................................................................................................... 107 

7.1.1 Key Findings and Results ................................................................................................. 108 

7.1.2 Significance ....................................................................................................................... 109 

7.2 Limitations ................................................................................................................... 110 

7.2.1 Cell Experiments ............................................................................................................... 110 

7.2.2 Modeling Assumptions ..................................................................................................... 111 

7.3 Future Work ................................................................................................................. 112 

7.3.1  Non-Periodic Oscillations ................................................................................................ 112 

7.3.2 Model Validation .............................................................................................................. 112 

7.3.3 Clinical Diagnostics .......................................................................................................... 112 

7.3.4 Microfluidics ..................................................................................................................... 113 

7.3.4 Outlook ............................................................................................................................. 113 

References ................................................................................................................................... 114 

Vita .............................................................................................................................................. 125 

  



www.manaraa.com

v 

 

List of Figures 
Figure 1.1 – Cilia and flagella in the body ...................................................................................... 2 

Figure 1.2– Ciliary components and associated disease ................................................................. 3 

Figure 1.3 – Ciliary ultrastructure ................................................................................................... 4 

Figure 1.4 – Diagram of flagellum origin and cross-section .......................................................... 7 

Figure 1.5 – Axonemal Elements from Cryo-EM .......................................................................... 9 

Figure 1.6 – Diagram of sliding filaments .................................................................................... 12 

Figure 1.7 – Diagram of transverse force and curvature .............................................................. 12 

Figure 2.1 – Cell body registration ............................................................................................... 19 

Figure 2.2 – Fourier analysis of uniflagellate cell rotation ........................................................... 20 

Figure 2.3 – Waveform tracing steps. ........................................................................................... 22 

Figure 2.4 – Demonstration of Isomap sorting ............................................................................. 23 

Figure 2.5 – Polynomial fit figures ............................................................................................... 24 

Figure 2.6 – General beat characteristics ...................................................................................... 25 

Figure 2.7 – Typical normalized curvature map ........................................................................... 26 

Figure 3.1 – Beat frequency vs viscosity ...................................................................................... 30 

Figure 3.2 – Cell body rotations per second ................................................................................. 31 

Figure 3.3 – Beats per revolution .................................................................................................. 32 

Figure 3.4 – Force balance between cell body and flagellum ....................................................... 32 

Figure 3.5 – Work generated by the flagellum vs viscosity ......................................................... 34 

Figure 3.6 – Propulsive force and power vs viscosity .................................................................. 35 

Figure 3.7 – Characteristic waveforms for selected experimental conditions. ............................. 37 

Figure 3.8 – Normalized flagellar stroke width ............................................................................ 38 

Figure 3.9 – Maximum and minimum normalized curvature values 𝜅̅ ........................................ 40 

Figure 3.10 – Average normalized absolute curvature ................................................................. 41 

Figure 3.11 – Normalized bend propagation speeds ..................................................................... 42 

Figure 3.12 – Normalized delay times .......................................................................................... 43 

Figure 3.13 – Power and recovery stroke completion with viscosity ........................................... 44 

Figure 4.1 – Flagellum schematics ............................................................................................... 50 

Figure 4.2 – Free body diagram of a differential element of a beam in viscous fluid .................. 52 

Figure 5.1 – Schematic of sliding displacement ........................................................................... 60 

Figure 5.2 – Eigenvalues from direct solution of the sliding-controlled flagella model .............. 69 

Figure 5.3 – Unstable and neutrally-stable modes of the sliding-controlled model with sliding at 

the base (Case 1). .......................................................................................................................... 70 

Figure 5.4 – Frequency of least stable mode and bend propagation direction, sliding-controlled 

model (Case 1) .............................................................................................................................. 71 

Figure 5.5 – Nonlinear simulation of sliding-controlled model with sliding at base (Case 1) ..... 72 

Figure 5.6 – Comparison of frequency of periodic solutions from direct analysis and weighted 

residual predictions, no base sliding (Case 2). .............................................................................. 74 



www.manaraa.com

vi 

 

Figure 5.7 – Eigenvalues of the sliding-controlled model with no base sliding (Case 2) from the 

weighted residuals method ............................................................................................................ 75 

Figure 5.8 – Mode shapes of the sliding-controlled model with no sliding at base (Case 2). ...... 75 

Figure 5.9 – Nonlinear simulation of sliding-controlled model with no sliding at base (Case 2) 76 

Figure 6.1 – Schematic of two doublet-pair model....................................................................... 81 

Figure 6.2 – Free body diagram of a single doublet pair .............................................................. 82 

Figure 6.3 – Schematic diagrams of inter-doublet separation. ..................................................... 84 

Figure 6.4 – Effect of inter-doublet separation on the rate of cross-bridge attachment or 

detachment .................................................................................................................................... 87 

Figure 6.5 – Dynamics of inter-doublet separation variables A and h. ........................................ 93 

Figure 6.6 – Analogous equations for A and h ............................................................................. 95 

Figure 6.7 – Propagation of inter-doublet separation ................................................................... 96 

Figure 6.8 – Eigenvalues of the GC model from the weighted residual method ........................ 101 

Figure 6.9 – Unstable modes of the GC model ........................................................................... 101 

Figure 6.10 – GC waveforms of Chlamydomonas flagella from time-marching simulation ..... 103 

Figure 6.11 – Nonlinear simulation of geometric clutch model ................................................. 104 

  



www.manaraa.com

vii 

 

List of Tables 
Table 2.1 – Mutants Examined ..................................................................................................... 17 

Table 5.1 – Parameter values for sliding-controlled model with base sliding .............................. 68 

Table 5.2 – Parameter values for sliding-controlled model with no base sliding ......................... 73 

Table 5.3 – Comparison of SC fundamental modes from simulation and direct eigenanalysis ... 77 

Table 6.4 – Summary of equations of flagella motion and inter-doublet separation .................... 89 

Table 6.5 – Equations for principal (P) and reverse (R) doublet pairs ......................................... 91 

Table 6.6 – Parameter values of the continuum GC model .......................................................... 93 

Table 6.7 – Comparison of GC fundamental modes from simulation to the linearized system . 104 

  



www.manaraa.com

viii 

 

Acknowledgments 
I would like to sincerely thank and acknowledge my adviser, Dr. Philip Bayly, for his amazing 

patience and support throughout my research career. I have benefitted immensely from his 

guidance and dedication to not only producing great research, but great researchers. I also 

acknowledge the guidance and support of Dr. Ruth Okamoto, a fantastic educator and mentor 

who has cultivated great work from every member of the lab and whose outreach has surely 

inspired the next generation of great engineers and scientists. Finally, I acknowledge Dr. Susan 

Dutcher, who has managed to teach the mechanical engineers biology. Her scientific curiosity 

and deep understanding of Chlamydomonas has inspired new perspectives leading to many 

discoveries about these little algae with big impact. 

To my colleagues, friends, and family: I sincerely thank you for supporting me, while 

encouraging other adventurous endeavors. I have learned much about balance and perspective 

from your lives and truly appreciate your friendship. 

I gratefully acknowledge the support of NIH training grant T32 14855-2 to Dr. Joseph Culver 

through the Imaging Sciences Pathway Fellowship. Through this grant I gained valuable skills 

and knowledge in imaging modalities, in addition to networking and informative sessions at the 

2014 NIBIB Training Grantees Meeting. Participation in this pathway has made me a more 

informed and well-rounded scientist. I also acknowledge NSF grant CMMI 1265447 to Dr. 

Philip Bayly for continued support on understanding how axonemes work. 

 

Kate Wilson 

Washington University in St. Louis 

May 2015  



www.manaraa.com

ix 

 

 

 

 

 

 

 

 

 

Dedicated to my family.  



www.manaraa.com

x 

 

Abstract  

ABSTRACT OF THE DISSERTATION 

Probing Mechanical Forces in Flagella by Manipulation of 
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Cilia and flagella are subcellular organelles used to generate fluid flow or propel the cell. These 

long cylindrical structures are composed of cytoskeletal elements activated by the unidirectional 

motor protein dynein. Cilia and flagella are crucial to a number of physiological functions, yet 

the specific mechanisms of dynein activation and coordination remain unclear. This work 

investigates the response of the flagellum of Chlamydomonas reinhardtii to increased 

mechanical loading achieved by variation of media viscosity, and to structural changes achieved 

by genetic manipulation. Effects of these perturbations are quantified using high spatiotemporal 

resolution recordings; the results demonstrate mutation-specific changes to the flagellar 

waveform. The flagellum may be mathematically modeled as a slender beam in viscous fluid. 

Two proposed mechanisms of dynein regulation are evaluated by identification of unstable 

modes and by numerical simulation. The sliding-controlled model of dynein regulation leads to 

non-propulsive retrograde modes of bend propagation. The geometric clutch model provides a 

mechanism of anterograde bend propagation and flagellar feedback which promotes bend 

switching at the base, similar to observed waveforms.
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Chapter 1 

 

Introduction: An Overview of Flagella 

Structure and Function 

 

This thesis is concerned with the mechanisms that produce oscillations and waves in flagella. In 

this chapter, I introduce the basic structure and function of these subcellular organelles, and 

explain the motivation for the studies described in subsequent chapters. 

1.1 Cilia and Flagella are Important Biological Motors 

1.1.1 Normal Function 

Cilia and flagella are thin, whip-like organelles used to propel cells or generate fluid flow. The 

names cilia and flagella refer to the same cytoskeletal structure – the axoneme – based on 

location and density of structures. Large groups, such as those found on the surface of airway 

epithelial cells, are termed cilia, while the individual motile structure (such as that propelling a 

sperm) is called a flagellum. In this work, the terms flagellum and cilium are used generally. 

Eukaryotic cilia are long cylindrical structures roughly 200 nm in diameter and up to10 µm long 

in human airway epithelia cells, although they can be up to 2mm long depending on species and 

function [1]. Flagella act as biological motors by actively generating bends along the length of 

the axoneme,. Bends are generated by the relative sliding of microtubules within the axoneme 

paired with elastic properties of the structure[2], [3]. Significantly, flagella are self-organized 

beating structures [4] that do not require innervation  in order to function. 
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Figure 1.1 – Cilia and flagella in the body 

Proper function of cilia and flagella is crucial to a number of body systems. Active structures are 

found in the airway epithelia, brain ventricles, embryonic node, and both male and female 

reproductive systems. Ciliary dysfunction and PCD is associated with laterality defects, inner ear 

infections, polycistic kidney disease, and congenital heart defects, among others. Images (‘Inner 

Ear’ clockwise) from references [5]–[11]. 

 

1.1.2 Dysfunction 

Ciliary defects have pervasive effects on human health. Inherited ciliary disorders are generally 

termed Primary Ciliary Dyskinesia (PCD) and include Kartagener syndrome, Bardet-Beidel 
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syndrome, and are often associated with Polycystic Kidney Disease (PKD) and Congenital Heart 

Disease (CHD) [12]–[18]. PCD is a genetically and phenotypically heterogeneous disorder with 

many potential effects, a few of which are shown with the associated ciliary defect in Figure 1.2 

[13], [15], [16], [19]. Most commonly, PCD cases are associated with mutations in genes that 

cause outer dynein arm defects [18], [20]–[22]. 

 
Figure 1.2– Ciliary components and associated disease  

Schematic of flagellum showing basal body, transition zone, and axoneme with associated 

known disease states. Figure from [16]. 

 

Typically PCD is diagnosed through transmission electron microscopy (TEM) of airway 

epithelial cilia; however a quantitative, automatic functional assessment would contribute a 

valuable tool to diagnosis of this heterogeneous disease. The differences observed here between 

inner- and outer – dynein arm deficient mutants suggests a functional assessment could someday 
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distinguish between these disease states. While some currently identified genes (including 

DNAI1 and DNAH5 [16], [18], [23]–[26]) have been shown to create outer-arm defects, the 

heterogeneity in the disease suggests there may be many genetic and structural defects that lead 

to the clinical diagnosis of PCD. In particular, outer arm defects appear to be more correlated 

with laterality defects than inner arm or central apparatus defects [23]. The development of such 

a diagnostic technique is outside the scope of this thesis. However, quantitative functional 

analysis methods may ultimately find value as diagnostic tools. 

1.2  Chlamydomonas reinhardtii as a Model Organism 
The single celled green alga Chlamydomonas reinhardtii is an excellent model organism for 

studying flagellar function due to a high degree of structural correlation, functional similarities 

in motion, and ease of lab culture and study [27]. 

1.2.1  Structural Similarities to Human Cilia 

 
Figure 1.3 – Ciliary ultrastructure 

(a) Cross sectional TEM of an airway cilium [28], arrows show dynein arms, scale bar 100 nm 

(b) Cross sectional EM of Chlamydomonas flagellum [29], scale bar 50 nm 
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Human cilia and Chlamydomonas flagella share a high degree of structural similarity, as shown 

in Figure 1.3, thus study of this simple organism is directly relevant to the investigation of 

human disease [13], [27], [30]–[33]. Both the structure and the corresponding proteins in 

microtubules, dynein arms, radial spokes, and central pair projections are conserved among 

eukaryotes and Chlamydomonas [18], [22], [25], [34]. Human cilia display diversity in structure 

and function; the typical 9+2 motile structure is found in airway cilia and sperm flagella, 

however there are also instances of 9+0 axonemes lacking a central pair, which may be motile 

(in the case of nodal cilia) or immotile (in the case of most primary sensory cilia) [12], [22], 

[35]. Here I consider only 9+2 motile axonemes. Chlamydomonas mutants lacking the radial 

spokes or central pair are often immotile or display an irregular beat [36]. The similarity in 

structure and sequence makes Chlamydomonas an excellent model for investigation of the 

flagellar axoneme. 

1.2.2  Cellular Characteristics 

Chlamydomonas reinhardtii is a single-celled organism roughly 10 µm in length by 5µm in 

diameter. The cell grows two ~ 8-12 µm flagella that beat in a coordinated breaststroke fashion 

to propel the cell through media. Cells manipulate beating modes from an asymmetric, 

propulsive beat pattern to a symmetric, ‘backwards only’ waveform [37]. It is thought that cells 

switch between these beating modes and regulate individual flagellum activity in order to 

manipulate swimming direction and access sunlight and nutrients [38]. Symmetric beating 

patterns may also be induced in isolated axonemes at high calcium concentrations [36], [39]). 

The beat of the Chlamydomonas flagellum is approximately planar [36], [40], allowing 

visualization of the entire flagellum within the focal plane of a regular optical microscope. 
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1.2.3 Laboratory Methods  

Chlamydomonas may be readily cultured in the lab under illumination in liquid or solid growth 

media [41]. Large numbers of cells can be quickly grown and isolated for proteomic analysis. In 

the lab, it is straightforward to cross mutant strains and characterize resulting progeny [19], [42]. 

As a result of many years of study, the Chlamydomonas genome has been sequenced [43]. 

Investigation of the flagellar proteome has identified over 600 polypeptides in the axoneme 

[44]–[46], proving the utility of flagellar isolation and comparative genomics techniques. 

Flagella are not essential for the cell cycle, thus mutations that cause flagellar dysfunction can 

still be investigated using standard genetics techniques. In addition, the scale of the cell and 

flagellum means that whole cells can be analyzed under a brightfield optical microscope with 

respect to flagellar motion, eliminating changes to flagellar behavior associated with 

demembranation and flagellar isolation. 

1.3  Details of Shape and Structure 
As noted above, the flagellum is a complex microtubule-based structure that generates active 

bending via the ATP-driven motor protein dynein [47]. The axoneme consists of structural 

elements (microtubules, radial spokes) as well as active elements (dyneins) that hydrolyze the 

cellular energy storage molecule adenosine triphosphate (ATP) to generate motion. 
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Figure 1.4 – Diagram of flagellum origin and cross-section 

The flagellum protrudes from the cell membrane from an anchored centriole, termed the basal 

body. A cross section of the flagellum structure is shown at right, viewed from the proximal end 

of the flagellum. The A and B tubule of one outer doublet is labeled, along with dynein arms 

(gray, green, red, blue), radial spokes, and central pair with projections (adapted from [48], [49]). 

 

1.3.1  Structure of the Flagellar Axoneme 
Microtubules are polar structures that form the foundation of the flagellar axoneme (polarity here 

refers to organization of subunits and not to electrical charge). Roughly 25 nm in diameter, 

microtubules grow from a ‘minus’ end to a ‘plus’ end through association of heterodimeric 

tubulin subunits. As shown in Figure 1.4, the flagellum originates in a basal body composed of 

triplet microtubules then passes through a complex transition zone where one partial tubule 

terminates [50], [51]. The remaining microtubule doublets protrude away from the cell as the key 

structural components of the axoneme. Each microtubule doublet has a complete ‘A’ 

microtubule connected to a partial ‘B’ microtubule, as shown in Figure 1.4 and Figure 1.5 [52]. 
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In the axoneme there are nine outer doublets arranged around a central pair of singlet 

microtubules (Figure 1.4). Protruding from each A tubule are dynein arms, labeled for their 

proximity to the central pair (inner dynein arms, IDAs, are closest to the central pair while outer 

dynein arms, ODAs, are furthest from the central pair). In addition to these motor proteins, the 

axoneme contains the flexible linker protein nexin that connects the A tubule to the adjacent B 

tubule and limits inter-doublet sliding [53], [54]. Radial spokes (RS) protrude from each A 

tubule towards the central pair and may interact with central pair projection proteins to regulate 

dynein activity [55]–[59]. The dynein regulatory complex (DRC) is located at the base of a radial 

spoke and is thought to associate with the outer-inner dynein linker (OID) to regulate dynein 

activity [52]. There is evidence that the DRC and nexin link are within the same structure, 

termed instead the N-DRC [60]. 

Dynein arms, radial spokes, and other regulatory proteins are patterned along the length of the 

flagellum in a series of periodically repeating 96 nm sections, with the exception of a few low-

abundance proteins [61], [62]. A typical 96nm section is shown in Figure 1.5 [52]. Outer dynein 

arms are anchored to the A tubule every 24 nm, while 7 separate IDA heavy chains are found 

within the 96 nm repeat as shown. 
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Figure 1.5 – Axonemal Elements from Cryo-EM 

(a) Diagram of adjacent microtubule doublets (looking distal-to-proximal) showing locations of 

outer dynein arms (ODA), inner dynein arms (IDA), dynein regulatory complex (DRC), radial 

spokes (RS), and microtubule inner proteins (MIP); (b) Characteristic longitudinal repeat of 

structures along the doublet (proximal - end to the left, distal + end to the right) including ODAs, 

IDAs (labeled I1α, β, 2-6), RS, and DRC as well as the outer-outer dynein linker (OOD) and 

outer-inner dynein linker (OID). Figure from [52]. 

 

1.3.2  Active Elements of the Flagellar Axoneme 
Dynein is a uni-directional molecular motor that moves towards the minus end of a microtubule 

(a structural protein composed of polar tubulin subunits) through ATPase activity of a ring of 6 

AAA+ domains [48]. Dyneins are differentiated from the other molecular motor proteins kinesin 

and myosin by their large heavy chain (HC) domain, which is over 500 kDa [48]. Specific 

dynein molecules vary in the number and composition of heavy chains as well as the size and 

types of smaller associated subunits. In the Chlamydomonas axoneme, outer dynein arms are 

trimeric with 3 heavy chains (α, β, γ) attached permanently to the A tubule by the tail domain. 

Outer dynein arms also contain a tail subcomplex of 2 intermediate chains and 8 light chains 

[48]. In contrast the inner dynein arms are simpler monomeric motors with only one HC, with 

the exception of IDA I1/f which contains two HC domains[48]. During the power stroke, the 

dynein stalk attaches to a neighboring microtubule via the microtubule binding domain (MTBD) 
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and slides the microtubule by conformational changes induced by ATPase activity in the motor 

domain. Studies have shown the dynein power stroke to act over a distance of ~15nm [63]. 

1.4  Function: How do Flagella Generate Motion? 
Flagella are ‘self-organized’ oscillators – requiring no external input or pacing source, although 

calcium and mutations can change beat characteristics [36], [39], [64]. Within the axoneme, 

dynein motors must overcome elastic structural resistance (from at least microtubules, radial 

spokes, and N-DRC) in order to generate bends [55], [65]. While single molecule studies and 

electron microscopy have provided a basis for understanding the mechanism of the dynein power 

stroke [33], [63], [66], [67], the spatiotemporal control of activation along the axoneme remains 

unknown. Each dynein heavy chain is able to generate a different amount of sliding force and is 

characterized by a specific force-velocity curve [42], [48], [68], [69]. Even at the level of the I1/f 

dyneins, the α and β heavy chains are thought to play different roles in the generation of force 

between adjacent microtubule doublets [70]. Despite the complexity of this structure, the 

flagellum is able to generate productive bends that not only move the axoneme, but provide a 

driving force to the attached cell or surrounding fluid. 

This work examines the importance of mechanical feedback in regulating flagellar dynein 

coordination. The periodicity and consistency of dynein motors makes it unlikely that individual 

heavy chains are responsible for bends at a given length along the flagellum. Likewise, the 

presence of diverse polypeptides within the axoneme (including motor protein kinesins used for 

intraflagellar transport) makes it unlikely that dynein activation is controlled exclusively by a 

propagating wave of ATP. Testing this hypothesis requires varying the mechanical loading of the 

flagellum, which is achieved by manipulating media viscosity. 
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The goal of this thesis is to better understand how mechanically feedback affects the function of 

the axoneme. By quantifying waveforms of genetic mutants under different viscosity conditions, 

we hope to gain insight regarding the functions of specific dyneins as well as the action of the 

flagellum as a whole. 

1.5  Mathematical Modeling of Flagellar Beating 
Mathematical models of the flagellum have been developed in an effort to understand the 

underlying principles governing flagellar motion. Even prior to the discovery of dynein, 

mathematical modeling provided evidence for the existence of a distributed force-generating 

mechanism along the length of the flagellum [71]. The spatiotemporal control of this force-

generation mechanism (now known to be dynein) remains a subject of debate. A model of inter-

doublet sliding dependent force generation (see Figure 1.6) was first proposed by Brokaw and 

has since been refined [2], [72]–[77]. A fundamental continuum model of the flagellum as a 

beam was developed in 1978 by Hines and Blum, with a proposed curvature-controlled force 

term [78]. This basic continuum model of the flagellum is described more fully later in this 

thesis (Chapter 4). Finally, a series of papers by Lindemann propose that transverse force 

between doublets (Figure 1.7) is the key regulator of dynein activity propagation along the 

axoneme [79]–[83]. Lindemann’s ideas are explored further in Chapter 6 of this thesis. 
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Figure 1.6 – Diagram of sliding filaments 

Fundamental description of the axoneme as a beam subject to bending via active sliding 

elements, proposed by Brokaw (Figure from [2]). 

 

 

 
Figure 1.7 – Diagram of transverse force and curvature 

Geometric clutch model proposed by Lindemann: Passive and active elements depicted at 

negative (a-b) and positive (c-d) curvatures, along with tension within the axoneme and 

transverse force. Figure from [79]. This model is described in more detail in Chapter 6. 
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The fundamental utility of a model is to inform our understanding of an observed process, not 

necessarily to exactly replicate the behavior. Essentially, a model is a precise, quantitative 

hypothesis that can be tested by comparison to observations and experiments. Here, we allow 

many simplifications including describing active force by a single continuous function of space 

and time (instead of individual dynein heads), the use of resistive force theory to describe fluid-

flagellum interactions, and simplification of the axoneme geometry. 

We examine the premise of periodic response developed by Riedel-Kruse [75] and extend the 

closed-form solution for a sliding filament model to a more general approach, discovering non-

periodic modes at the same parameter values [84]. In addition, we formulate the geometric clutch 

as a continuum model which can only be resolved through time-marching simulation. For each 

model, we examine the stability of the identified solutions and comment on the feasibility of the 

obtained solution as a mechanism for flagellar control. 

1.6 Dissertation Organization 

1.6.1 Specific Aims 

This dissertation describes progress toward three specific aims, all tied toward the over-arching 

objective of understanding the generation of autonomous, propulsive oscillations of flagella and 

cilia. 

 Specific Aim 1: Investigate the mechanics of flagella in wild-type Chlamydomonas by 

characterizing the effects of viscosity on waveform,  

 Specific Aim 2: Investigate the mechanics of flagella in mutant Chlamydomonas lacking 

specific axonemal components by characterizing the effects of viscosity on waveform in 

these mutants. 
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 Specific Aim 3: Evaluate and improve upon existing computational models of the flagellar 

waveform. 

The overall goal of this work is to use tools and concepts from mechanical engineering to 

understand how the flagellum develops a propulsive, coordinated waveform. Key mechanical 

engineering concepts include nonlinear, slender elastic beam theory, low-Reynolds number fluid 

mechanics, stability analysis, and computational modeling schemes. Manipulation of loading 

force is achieved through increasing media viscosity.  

 

This study provides experimental evidence and theoretical arguments to answer the question, 

“How does mechanical force contribute to control of the flagellar waveform?” 

1.6.2 Chapter Organization 

The remainder of the dissertation is organized as follows: 

Chapter 2 introduces the methods used to acquire and analyze experimental data. 

Chapter 3 describes the effects of changes in viscosity and various genetic mutations on the 

Chlamydomonas flagellum waveform. 

Chapter 4 reviews the derivation of the equations of a slender beam in viscous fluid; these 

equations underlie the mathematical modeling of flagellar motion. 

Chapter 5 examines a previously-published model of a sliding-controlled mechanism of flagellar 

bending.  Unstable modes are found at the same parameters used in the prior study to identify 

periodic modes; this new evidence weakens the case for the particular model. 
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Chapter 6 examines the “geometric clutch” mechanism of flagellar bending and formulates a 

continuum model of the flagellum with inter-doublet shear force regulated by transverse 

separation between the doublets. 

Chapter 7 presents a summary of the project, as well as conclusions, discussion of limitations, 

and speculation into future work. 
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Chapter 2 

 

Experimental Methods for Characterization 

of the Flagellar Waveform 

 

Quantification of waveform parameters requires cell preparation, microscopy, video recording, 

image processing, and data analysis. This chapter presents a description of the steps taken to 

obtain and evaluate data to quantitatively describe the flagellar beat. 

2.1 Introduction and Motivation 
Chlamydomonas flagella are typically around 200 nm in diameter and range from ~8-12 µm. 

Optical microscopy is possible at this scale, but the diameter of the flagellum is close to the 

theoretical limit of optical resolution, 𝑟 = 𝜆/2𝑁𝐴 with a numerical aperture of 1.0 and standard 

white light with wavelengths ranging ~ 400-700 nm. We used methods to maximize resolution at 

recording through the use of DIC optics, as well as post-processing techniques to increase 

contrast. We have developed and refined automated analysis algorithms to concisely characterize 

flagellar waveforms and summarize spatiotemporal patterns for mechanical analysis[85], [86]. 

This chapter outlines the tools and techniques developed in order to quantify Chlamydomonas 

flagellum waveforms. 

2.2 Cell Culture and Genetics 
The wild-type strain of the single-celled alga Chlamydomonas reinhardtii swims propulsively 

through media with two flagella in order to access sunlight and photosynthesize. In 1982, mutant 
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cells growing only a single flagellum were isolated and characterized by their distinct spinning 

phenotype [87]. Uniflagellate cells provide a distinct advantage in waveform analysis – without 

net forward motion cells spin in place and may be recorded over longer periods of time within a 

specific field of view. This allows focused, high resolution optical microscopy at high speeds 

(350 frames per second) and tuning of microscope settings to each particular cell. 

To evaluate the effects of specific dynein arm proteins, each mutant was crossed into the uni1 

background with desired progeny selected by phenotype [88], performed by the Dutcher lab. 

Uniflagellate cells and biflagellate mutant cells were obtained from the Chlamydomonas 

Resource Center (St. Paul, MN). Each dynein arm mutant (described in Table 2.1) was crossed 

with uniflagellate cells to generate Chlamydomonas cells with the desired dynein arm mutation 

within only one flagellum. Note, double-mutants are described only with respect to structural 

defect (hence, ida1;uni1 cells are referred to as ida1, etc). 

Table 2.1 – Mutants Examined 

Gene 
Protein 

Encoded 
Structural Phenotype 

Observed 

Phenotype 
References 

ida1 1α HC Lacks inner arm I1 (f) Slow swimming [42], [89]–[91] 

ida4 p28 Lacks inner arms a, c, d Slow swimming [42], [89], [90], [92] 

oda2 γ HC Lacks outer arms 
Very slow 

swimming 
[42], [72], [93] 

 

After phenotypic selection, cells were allowed to grow on rich medium agar plates [94] for 2 

days. Cultures were then scraped into tubes with 2 mL rich liquid medium (‘R medium’) [41], 

[94], [95], and allowed to grow for 48 hours under constant illumination at 25C. 
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2.3 Optical Microscopy Recordings 
Uniflagellate cells were recorded using bright field microscopy on a Zeiss Universal Microscope 

(Carl Zeiss, Oberkochen, Germany) using a 40x Planapo oil-immersion objective with DIC 

optics. A sample was prepared by pipetting 20µL liquid culture onto an acid washed slide, and 

then covered by an 18x18mm coverslip. A periodically rotating cell was located by inspection 

and centered in the field of view. Microscope settings were then adjusted to provide maximum 

contrast between the flagellum and background. Videos were recorded at 350 frames per second 

with 2.86 ms shutter speed at 320x240 pixel resolution using a Dragonfly Express IEEE-1394b 

Digital Camera System and FlyCapture software (Point Grey Research, Scottsdale, AZ). Each 

video was 1 second in length (around 350 frames), recorded in AVI format. 

2.4 Viscosity 
Media viscosity was increased through the addition of Ficoll 400 (Sigma Aldrich, St. Louis, 

MO), a 400 kD inert polysaccharide often used in biological filtration systems and in other 

viscosity studies [92], [96], [97]. A 40% w/v Ficoll solution was created by slowly mixing Ficoll 

lyophilized powder with autoclaved R medium [94] until no powder could be seen in the viscous 

solution. For increased viscosity trials, an appropriate volume of 40% w/v Ficoll solution was 

pipetted onto the appropriate liquid cell culture volume, such that the total examined volume was 

20 µL at the specified viscosity. The Ficoll solution was pipetted with the liquid culture slowly to 

allow complete mixing of solutions, even at maximum viscosity. Viscosity of the mixed solution 

was verified in separate trials by an AR-G2 Rheometer (TA Instruments, New Castle, DE). 

2.5 Image Processing 
Videos were analyzed in Matlab™ (The Mathworks, Natick, MA) using custom algorithms. For 

each video, at least 200 consecutive frames were selected for optimal flagellum contrast. Only 
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frames in which the flagellum was clearly visible were used. In addition, only videos in which 

the entire cell body and flagellum remain in the field of view were used. First, a region of interest 

around the cell body was selected to establish a cell-based reference frame (x’,y’) and laboratory 

reference frame (X,Y), as shown in Figure 2.1 [85]. The region of interest was then rotated 360 

degrees in increments of 0.5 degree to develop a set of potential images, indexed by angular 

rotation. Each video frame was then compared to the entire generated set of rotated images and 

the angular rotation amount with the highest correlation to the given video frame was assigned as 

the ‘true’ orientation of the cell body (based on the selected region of interest)[85]. From this 

analysis we obtained angular rotation vs time (as shown in Figure 2.2). 

 
Figure 2.1 – Cell body registration 

(a) Cell (x’,y’)and laboratory (X,Y) based reference frames shown on a cartoon of a uniflagellate 

Chlamydomonas cell. (b) Reference frames superimposed on one frame of a recorded 

uniflagellate cell, yellow trace shows tracked motion of the centroid of the cell body over the 

course of a full rotation (figure adapted from [85]). 
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Figure 2.2 – Fourier analysis of uniflagellate cell rotation  

Uniflagellate cell rotating in (a) regular 1.6 cP media, (b) high viscosity 6.2 cP media. Top image 

shows detailed section of cell body angle vs time demonstrating power stroke (green arrows) and 

recovery stroke (black arrows). Middle image shows 1 second of angular data, bottom image 

shows PSD of frequency data where peak indicates recorded beat frequency. 

 

A power spectral density (PSD) estimate was obtained from the fast Fourier transform of the 

time-series of angular rotation data (psd function in MATLAB, The Mathworks, Natick, MA); 

the peak frequency was defined as the beat frequency of the cell. Increases in cell body angle 

(green arrows in insets, Figure 2.2) represent counter-clockwise rotation as a result of the power 

stroke of the flagellum, while decreases in angle (black arrows in insets, Figure 2.2) represent the 

backwards (clockwise) rotation of the cell during the recovery stroke. The overall positive trend 

in the slope of the angle vs. time curve indicates the rotation rate of the given cell (faster cells 

have a higher angle vs time slope).  
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The number of full cell body rotations per second was calculated from a linear fit to the angle vs 

time data, converted to rotations by dividing by 2𝜋 radians per rotation [85]. The number of 

beats per revolution was then calculated from: 

 
𝐵𝑒𝑎𝑡𝑠 𝑝𝑒𝑟 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  

𝐵𝑒𝑎𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑
 

(2.1) 

2.6 Waveform Analysis 
Rigid body rotation and translation algorithms could be used to characterize swimming and 

spinning speeds of either biflagellate or uniflagellate cells, however to understand waveform 

properties and changes we developed additional protocols to isolate and mathematically describe 

the axoneme shape in every frame. Wild-type Chlamydomonas flagella typically beat around 50-

60 Hz, thus when recording at 350 frames/second only ~6-7 frames per beat can be collected. 

Because of mismatch between sampling frequency and flagellar beat frequency, the phase of 

flagellar waveforms in the frames collected varies relatively evenly over the entire beat cycle 

[85]. In order to increase the time density of waveform information, we assume periodicity of the 

beating flagellum and re-organize individual video frames into one stereotypical waveform per 

cell recorded [85]. 

While microscope settings were optimized at the time of recording, often video frames were 

difficult to process using only automatic selection procedures. To improve contrast between the 

flagellum and background, the stack of individual images was first optimized to remove artifacts 

and the region containing the flagellum was manually selected to reduce the total amount of 

stored data. Image stacks were exported to .avi files and opened in ImageJ [98]. The flagellum 

was manually traced in each frame, and then saved again as an .avi with increased contrast. The 
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traced videos were then imported back to the original processing file in Matlab as a stack of 

images (Figure 2.3). 

 
Figure 2.3 – Waveform tracing steps. 

(a) Image from recorded video file displaying poor flagellar contrast, (b) traced image, (c) cloud 

of 100 points (blue) fitted to traced flagellum. Scale bar, 10µm. 

 

To quantify the shape of the flagellum in each image, a ‘cloud’ of 100 points was assigned to the 

darkest pixels in each of the enhanced images in the traced video stack (Figure 2.3(c)). Each 

frame was reviewed for misalignments and artifacts, which were corrected by hand. The Isomap 

algorithm [99] was used to correlate point clouds throughout multi-dimensional space, aligning 

images based only on progress through the characteristic beat (phase) instead of through 

recorded time. A series of unsorted point clouds is shown in Figure 2.4(a). Point clouds sorted by 

phase similarity by Isomap are shown in Figure 2.4(b) [85], [99]. 
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Figure 2.4 – Demonstration of Isomap sorting 

(a) Unsorted point clouds. Recorded frames progress left to right, top to bottom. (b) point clouds 

after phase sorting by Isomap [99]. Scale bar 10 µm, upper right of each subfigure. [85] 
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The sorted point clouds still only describe discrete points along the flagellum in space and time, 

however we can more concisely describe the flagellum as a curve of given length (measured for 

each cell). In each frame we calculated a 4
th

 order polynomial describing the waveform, 

determining the coefficients through least-squares regression to the point cloud. The entire 

flagellar waveform can then be described in a concise, quantitative manner. By smoothing and 

interpolating in time and space, we can generate a complete time-periodic surface of position and 

shear angle (ψ) as a function of time and space, as shown in Figure 2.5 (data from point clouds 

shown in black, polynomial fits shown every 1/12
th

 of a cycle to give an overall impression of 

the waveform).  

 
Figure 2.5 – Polynomial fit figures 

(a) Smoothed surface of flagellar beat, color-coded by time (z-axis) with individual point clouds 

in black. (b) Polynomial fits every 1/12
th

 period of data shown in (a). Scale bar 5 µm. 
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2.6 Post-Processing 

 
Figure 2.6 – General beat characteristics 

Diagram of a typical waveform by polynomial fits every 1/12
th

 period color-coded in time (blue 

to red) showing principal bend (negative curvature, marked with ‘+’) and reverse bend (positive 

curvature, marked with ‘*’, some markers removed for clarity). Stroke width is defined as the 

maximum x-distance between any points throughout the flagellar beat. 

 

Following mathematical description of the flagellar beat in space and time, summary parameters 

were saved for further analysis. In particular, the matrix of angular data 𝜓(𝑠, 𝑡) in space and 

time was used to determine flagellar bend parameters such as: 

- maximum and minimum curvature values in space and time 
𝜕𝜓(𝑠,𝑡)

𝜕𝑠
|𝑚𝑎𝑥,𝑚𝑖𝑛 

- bend propagation speeds   
𝜕 

𝜕𝑡
(𝑠𝑘𝑚𝑎𝑥) for maximum curvature or 

𝜕 

𝜕𝑡
(𝑠𝑘𝑚𝑖𝑛) minimum 

curvature (where 𝑠𝑘𝑚𝑎𝑥, 𝑠𝑘𝑚𝑖𝑛 are the spatial locations of the maximum or minimum 

curvatures, respectively) 
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- maximum and minimum sliding velocities 
𝜕𝜓(𝑠,𝑡)

𝜕𝑡
|𝑚𝑎𝑥,𝑚𝑖𝑛 

A sample plot of normalized curvature (𝐿
𝜕𝜓(𝑠,𝑡)

𝜕𝑠
), in space and time is shown in Figure 2.7; 

bend propagation speeds are shown by white and black lines fitted to the minimum and 

maximum curvatures, respectively. In addition, other parameters such as delay time between 

bends entering the flagellum were calculated from the output angular data (similar to 

calculations described [86]). These parameters were compared among loading and genetic 

conditions to analyze specific flagellar response to altered conditions or structure. 

 
Figure 2.7 – Typical normalized curvature map  

Normalized curvature 𝐿
𝜕𝜓(𝑠,𝑡)

𝜕𝑠
. Two periods (x-axis) vs nondimensional length along flagellum 

(y-axis), oriented so that flagellum origin is at the top left of figure (proximal and distal regions 

marked). Delay time is defined as the time from minimum negative curvature (principal bend 

initiation) to maximum positive curvature (reverse bend initiation) at the base of the flagellum 
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(normalized by period). 

The experimental methods and image processing techniques outlined above enable quantitative 

description of the flagellar waveform in media of different viscosities. These methods condense 

large volumes of data (videos) into concise, quantitative descriptions of the flagellum in space 

in time. This quantitative description can be used to estimate curvatures, forces, bend 

propagation speeds, and other system parameters [86] to describe flagellar response to specific 

testing conditions. Mathematical quantification of the waveform can also be used to 

parameterize and validate computational models of flagellar behavior. Most waveform 

parameters are normalized by flagella length, 𝐿, or the beat frequency, 𝑓𝑏, or both.  
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Chapter 3 

 

The Effects of Viscosity on Flagellar 

Waveform in Normal and Mutant Flagella 

 

Flagella of wild-type and mutant Chlamydomonas axonemes (uni1, ida1, ida4, and oda2) were 

examined in regular and high viscosity media. Waveforms were quantified as described in 

Chapter 2 and parameters were analyzed with respect to structural mutation and viscosity. 

3.1 Introduction and Motivation 
The green alga Chlamydomonas has been used for many years to investigate flagellar behavior, 

however little is known about the flagellar response to increased loading. The response to 

varying external forces could help evaluate hypotheses concerning feedback control of dynein. 

Here we quantify waveform changes in uniflagellate Chlamydomonas at high viscosities, using 

methods described in Chapter 2. We observe a reduction in beat frequency with viscosity in the 

wild-type (uni1), γ HC (outer dynein arm) deficient (oda2), and p28 deficient (inner dynein arm 

a, c, d) (ida4) uniflagellate cells. Inner dynein arm mutant ida1 (lacking the 1α HC of IDA1/f) 

continues to beat at high viscosities but alters its waveform to compensate for reduced force 

production in this high loading environment. All cell types produce significantly less power at 

high viscosity. The current results suggest that, in the absence of IDA1/f dynein, direct force 

feedback primarily in the outer dynein arm system leads to earlier switching in response to 
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viscous loading. IDA1/f dynein delays the initiation of the recovery stroke and ensures a 

complete power stroke at all viscosities, perhaps by controlling inter-doublet separation. 

3.2 Cell Body Parameters 
At each viscosity and genetic mutation condition 10 cells were analyzed. The effects of viscosity 

were characterized (1) by the beat frequency and cell rotation rate, (2) by average force and 

power generated by the flagellum, and (3) by the flagellar waveform. Prior work [92], [100] has 

not addressed systematically the effect of viscosity on Chlamydomonas waveform, either in 

wild-type or dynein arm deficient flagella. 

3.2.1 Beat Frequency and Rotation Rate 

Data regarding beat frequency and beats per revolution was calculated from the overall cell body 

registration procedure [85]. Beat frequency decreased with increasing media viscosity for all 

cells. As shown in Figure 3.1, oda2 cells decreased beat frequency significantly with increasing 

viscosity, while ida1 cells were able to maintain beat frequency up to 8 cP. Cells missing outer 

arms were unable to beat at wild-type frequencies, as described by Minoura and Kamiya [100]. 

In contrast to prior work, our results did not show an increase in beat frequency at any viscosity. 

In addition, we observed ida4 cells beating at high viscosities in comparison to the sharp 

decrease in beat frequency found by Minoura and Kamiya [100]. 
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Figure 3.1 – Beat frequency vs viscosity 

(a) Average beat frequency vs viscosity for all cells tested. Error omitted for clarity. Beat 

frequency significantly decreased with viscosity for each cell type by single factor ANOVA 

(p<0.01).  (b-e) Individual cell type plots from (a) with error bars showing standard deviation. * 

indicates significant difference from beat frequency at 1.6 cP (baseline), (p<0.01 by two-tailed 

student t-test) + indicates significant difference from beat frequency at 8 cP (p<0.01 by two-

tailed student t-test). (f) ida4 and oda2 cells beat significantly slower than uni1 cells at 1.6 cP; 

ida1 cells beat faster than uni1 at 8cP (p<0.01 shown by *). 
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As expected, the number of cell body rotations per second decreased with viscosity (Figure 3.2). 

Subsequently, the number of flagellar beats per cell revolution was calculated by Equation (2.1). 

The number of beats per cell revolution increased for all cells (Figure 3.3), illustrating that cell 

rotation rate decreases faster than beat frequency as load increases. ida1 and uni1 cells displayed 

a significant increase in beats per revolution with media viscosity. ida4 and oda2 cells did not 

have a significant increase in beats per revolution with viscosity by single-factor ANOVA at the 

P<0.01 level. 

 
Figure 3.2 – Cell body rotations per second 

(a) All cell types showed significant reduction in cell body rotations per second with increasing 

viscosity by 3.5 cP (p<0.01, ANOVA followed by paired t-test). (b) Among mutants, significant 

difference from uni1 is given by (*) (p<0.01). Error bars show standard deviation. 
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Figure 3.3 – Beats per revolution 

(a) uni1 and ida1 showed significant variation with viscosity (ANOVA followed by paired t-test, 

p<0.01). (b) Among mutants, ida1 was significantly higher than uni1 at all viscosities (ANOVA 

followed by paired t-test p<0.01). Error bars show standard deviation. 

 

3.2.2 Torque and Power 

 
Figure 3.4 – Force balance between cell body and flagellum  

Schematic showing cell body major axis 2𝑎 and minor axis 2𝑏. Assuming all forces and 

moments originate in the flagellum and are completely transferred to the cell body (red), the 

motion of the cell body through a viscous fluid reflects the flagellum force generation (blue 

forces and moment indicate cell body reaction forces to viscous load, which can be calculated 

from measurements of cell body motion and fluid mechanics). 
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Using angular rotation of the cell body and measurements of the minor and major axes of the 

cell, we calculated the average torque produced by each cell as described [86]. Briefly, the torque 

required to move the ellipsoid cell through a viscous fluid is proportional to viscosity of the fluid 

𝜇 and rotation rate 𝜔, along with shape parameters 𝑎, 𝑏, and 𝐶𝑓3 (a nondimensional parameter  

~1-1.4 derived from the eccentricity of the cell body) [86]: 

 𝑀𝜇 = 8𝜋𝜇𝑎𝑏2𝜔𝐶𝑓3 (3.1) 

The torque 𝑀𝜇 is equivalent to the average work per cell body revolution (Figure 3.5(a)). 

Dividing the average work per revolution by recorded beats per revolution we obtain the work 

per flagellum beat (Figure 3.5(b)).  

Assuming the force exerted by the flagellum on the cell body occurs as shown in Figure 3.4, we 

convert from average torque to ‘propulsive force’ by dividing the torque by the major semi-axis 

dimension, 𝑎: 

 𝑀𝜇 = 𝑎𝐹𝑦 + 𝐹𝑥(Δ𝑦) (3.2) 

where Δ𝑦 is the y-distance from the centroid of the cell body to the base of the flagellum. 

Assuming Δ𝑦 ≈ 0, the equivalent propulsive force from the flagellum is 𝐹 =
𝑀𝜇

𝑎
. The power 

developed by the rotating cell body was calculated by multiplying torque by angular rotation 

rate: 𝑃 = 𝑀𝜇𝜔, data shown in Figure 3.6. All cells showed a significant decrease in power with 

viscosity, force and power values are comparable to prior work [100]. Wild-type axonemes 

(uni1) are able to produce the most force and power. Both ida4 and ida1 cells are able to produce 

work at high viscosities (Figure 3.5), however the lower magnitude of force and slower rotation 

rate (Figure 3.2) of ida1 cells means they are unable to produce as much power at high 

viscosities (Figure 3.6). 
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Figure 3.5 – Work generated by the flagellum vs viscosity 

(a) All cells showed significant variation in average work per revolution with viscosity (ANOVA 

p<0.01). (b) All cells showed significant variation in work per flagellum beat with viscosity 

(ANOVA p<0.01, standard deviations omitted for clarity). Calculating the work per beat 

emphasizes lower average torque production of ida1 flagella, despite sustained beat frequency at 

high viscosity. Error bars omitted for clarity. 
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Figure 3.6 – Propulsive force and power vs viscosity 

(a) Propulsive force calculated from Equation (3.2). uni1, ida1, and oda2 cells showed 

significant variation in propulsive forces with viscosity (ANOVA, p<0.01) (b) uni1 cells 

generate much more power than axonemal mutants, and are able to develop the most power in 

regular 1.6 cP media. Change in power with viscosity was significant for all mutants (ANOVA, 

p<0.01, standard deviations omitted for clarity). These values are close to previous estimates of 

propulsive force and power in biflagellate cells [92], [100]. Error bars omitted for clarity. 

 

3.3 Waveform Parameters 
Representative cells from selected experimental conditions are shown in Figure 3.7a. Each 

subfigure displays the polynomial fit to the observed flagella shape, at intervals of 1/12
th

 beat 

period, to provide an image of the waveform. In these cells, beat shape exhibited changes in 

response to increased media viscosity, most noticeably as reduced stroke width. In all mutant 

cells, the most distal part of the flagellum displays higher curvature values at higher viscosities 
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(Figure 3.7b). Mutants displayed variable response to increasing viscosity; ida1 in particular 

displayed a reduced stroke width at high viscosity. Figure 3.7b shows the curvature plots over 

space and time for the same individual cells plotted in Figure 3.7a.  
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Figure 3.7 – Characteristic waveforms for selected experimental conditions. 

Viscosity of media given by column, genetic mutation shown by row. (a) Polynomial fits to 

characteristic cells every 1/12th period, scale bar 5 µm. (b) Corresponding plot of normalized 

curvature 𝜅̅ plotted vs non-dimensional time (x-axis) and space (y-axis). 
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3.3.1 Beat Width 

To quantify waveform parameters, the characteristics of sequential polynomial fits were 

investigated. The apparent trend of reduction in beat width with viscosity (Figure 3.8) was 

quantified by calculating the maximum x-distance across the dataset in both space and time to 

determine the parameter ‘stroke width’. Consistent with inspection, ida1 cells had a significantly 

reduced stroke width at increased viscosity levels. Of the other mutants examined, a decrease in 

stroke width was only found to be significant in uni1 cells at viscosities over 3.5 cP. 

 
Figure 3.8 – Normalized flagellar stroke width 

Maximum x-distance between any points in flagellar beat, normalized by 𝐿. (a) uni1 and ida1 

showed significant variation in stroke width with viscosity (ANOVA, p<0.01) (b) Significant 

differences in stroke width between uni1 and ida1 were identified at all viscosities (paired t-test, 

p<0.01). Error bars show standard deviation. 
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3.3.2 Curvature Values 

Values of minimum and maximum curvature correspond to the principal and reverse bends, 

respectively. It is important to note the principal bend (negative curvature) characterizes the 

recovery stroke, while the reverse bend (positive curvature) characterizes the power stroke. As 

shown in Figure 3.9, only uni1 cells displayed a significant increase in the magnitude of both 

negative and positive curvature with viscosity. Note all curvature values are normalized by 

flagellum length and beat period. 

By inspection, ida1 cells appear to increase in curvature (Figure 3.7), yet maximum or minimum 

curvature values do not exhibit significant changes (Figure 3.9). To elucidate specific waveform 

changes with viscosity, we considered the mean of the absolute value of the flagellum curvature 

over its entire length. As shown in Figure 3.10, the average absolute curvature for ida1 cells 

remained nearly constant with increasing viscosity, while uni1 average absolute curvature 

increased significantly (p<0.01) and oda2 average absolute curvature decreased (not significant) 

with viscosity. 
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Figure 3.9 – Maximum and minimum normalized curvature values 𝜅̅ 

Curvature values normalized by 
𝜕𝜓

𝜕𝑠
|𝑜  =  

1 

𝐿
 rad/µm. (a) uni1, ida4, and oda2 cells had significant 

variation in minimum negative curvature with viscosity (ANOVA, p<0.01), however only uni1 

displayed a significant trend in increasing magnitude of negative curvature with viscosity (paired 

t-test between viscosities, p<0.01). (b) Comparison among mutants shows only a significant 

difference between uni1 and ida1, oda2 at high viscosity (student t-test following ANOVA, both 

p<0.01). (c) uni1, ida4, and oda2 cells had significant variation in maximum positive curvature 

with viscosity (ANOVA, p<0.01), both uni1 and oda2 displayed a significant trend in increasing 

magnitude of curvature with viscosity (t-test between viscosities, p<0.01). (d) Significant 

variation between mutants was detected at low viscosity (ANOVA, p<0.01) with subsequent 

analysis revealing only a significant difference between uni1 and ida4 (p<0.01). (a,c) Error bars 

omitted for clarity (b,d) Error bars show standard deviation. 
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Figure 3.10 – Average normalized absolute curvature 

Mean of absolute value of normalized curvature 𝜅̅. (a) Average of absolute value of curvature 

over the entire length of the flagellum at every point in time. Only uni1 showed significant 

variation in total absolute curvature (ANOVA, p<0.01). ida4 data and standard deviations 

omitted for clarity. (b) oda2 differed significantly from uni1 at all viscosities (p<0.01), error bars 

show standard deviation. 

 

3.3.3 Bend propagation speeds 

The propagation speeds of principal and reverse are shown in Figure 3.11. Propagation speeds 

are normalized by flagella length and beat frequency (𝑣0  =  𝐿𝑓𝐵) to account for the effects of 

very low beat frequencies. The propagation speed of maximum curvature, 
𝜕 

𝜕𝑡
(𝑠𝑘𝑚𝑎𝑥) , gives the 

average velocity of the reverse bend (which drives the power stroke) as it propagates from the 

base to the tip of the flagellum. Likewise, the propagation speed of the minimum curvature point, 

𝜕 

𝜕𝑡
(𝑠𝑘𝑚𝑖𝑛) , gives the proximal-to-distal velocity of the principal bend (characterizing the 

recovery stroke). The propagation speeds of the minimum curvatures are always higher than the 

propagation speed of the maximum curvature (Figure 3.11). oda2 mutants show the greatest 

difference between propagation speeds of the minimum and maximum curvature, consistent 

across all viscosity levels. 
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Figure 3.11 – Normalized bend propagation speeds 

Bend propagation speeds normalized by 𝑣0  =  𝐿𝑓𝐵. (a) There was no significant trend in 

maximum curvature (reverse bend, power stroke) propagation speed among mutants at different 

viscosities. (b) At all viscosities, oda2 cells had significantly higher minimum curvature 

propagation (principal bend, recovery stroke, ANOVA p<0.01). (c-f) plots of maximum 

curvature (reverse bend, power stroke) and minimum curvature (principal bend, recovery stroke) 

propagation speed vs viscosity by cell type. Markers * and + indicate significant differences at a 

given viscosity and cell type from 1.6 cP, 8 cP values, respectively (p<0.01 by paired t-test). 

Error bars show standard deviation. 
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3.3.4 Delay Times 

The delay time between the principal bend (minimum curvature) and reverse bend (maximum 

curvature) was calculated as shown (Figure 2.7). There were no significant trends in delay times 

with viscosity, however both oda2 cells and ida1 cells had significantly lower time delay at the 

base of the flagellum than uni1 cells, particularly at low viscosities.  

 
Figure 3.12 – Normalized delay times 

Delay times were calculated as show in Figure 2.7, normalized by period. There were no 

significant trends in delay time with viscosity. (a) There were no significant trends in delay time 

at the tip of the flagellum among mutants at any viscosity level. (b) Among mutants, both ida1 

and oda2 cells differed significantly from uni1 time delay at the base of the flagellum (p<0.01). 

Error bars show standard deviation. 

 

3.3.5 Power and Recovery Stroke Completion 

We define the completion of a bend as the distance that bend has traveled down the length of the 

flagellum at the time the opposite bend enters the base of the flagellum. Power stroke completion 

describes the fraction of the flagellum the maximum positive curvature has traveled when the 

negative curvature enters the flagellum. Similarly, recovery stroke completion describes the 

fraction of the flagellum the minimum negative curvature has traveled down the length of the 

flagellum when the positive curvature enters the base of the flagellum. ida1 cells have a 
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significantly reduced power stroke completion relative to other cell types (Figure 3.13(a)). oda2 

cells have increased recovery stroke completion at all viscosities (Figure 3.13(b)). 

 

Figure 3.13 – Power and recovery stroke completion with viscosity 

Completion is characterized by distance the bend propagates, normalized by flagellum length 𝐿, 

before the opposing bend begins. (a-b) Power stroke completion. (a) ida1 cells have a reduced 

distance to positive curvature (power stroke) when the negative curvature (recovery stroke) 

enters the flagellum. (b) oda2 and ida1 cells differ significantly from uni1 completion lengths at 

low and medium viscosities (p<0.01). (c-d) Recovery stroke completion. (a) oda2 cells have an 

extended distance to negative curvature (recovery stroke) when the positive curvature (power 

stroke) enters the flagellum. (d) oda2 cells have a significantly longer recovery stroke 

completion than uni1 cells at low and medium viscosities (p<0.01). Error bars show standard 

deviation. 
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3.4 Discussion 
We have shown that Chlamydomonas reinhardtii flagella respond to mechanical loading and to 

structural perturbations of the axoneme. Here we quantify not only general beat frequency 

characteristics, but also waveform characteristics, in media of increased viscosity. Genetic 

mutants with specific dynein-arm protein deficiencies displayed distinctly different waveforms 

under increased mechanical loading conditions. 

Through cell-body registration we obtained information regarding the beat frequency of each 

flagellum (Figure 3.1). Cells lacking outer dynein arms (oda2) have a much lower beat frequency 

than uni1 [92], [100]. As viscosity of media increases, uni1, ida4, and oda2 cells respond by 

decreasing beat frequency. Notably ida1 cells are able to maintain beat frequency after an initial 

decrease (at loading from 1.6 to 2.6 cP). These results are similar to the results of Minoura and 

Kamiya [100] which showed a decrease in beat frequency for uni1, ida1, ida4, and oda1 

biflagellate cells with increasing viscosity. In contrast, ida4 cells in our experiments were able to 

continue beating past 2.6 cP and did not show any increase in beat frequency with viscosity. 

Both oda1 and oda2 mutants have complete loss of the outer dynein arms [93], thus we expect 

similar results between our observations of oda2 and previous data from oda1 [100]. We found 

good agreement between beat frequency values obtained in this study and from the literature 

[92], [100]. In comparison to [100] we have extended the range of viscosities studied and 

observe a drop in beat frequency above 6 cP for all mutants except ida1. Thus, even structurally 

wild-type axonemes react to increased loading by decreasing beat frequency. In addition, both 

ida1 and uni1 axonemes showed a significant increase in beats per revolution with viscosity. The 

key observation of this study is that ida1 cells were able to continue rotating at high viscosities 

by dramatically increasing the flagellar beats per revolution. 
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In terms of the flagellar waveform, maximum and minimum curvature values did not change 

much with increased viscosity. ida1 cells showed a significantly reduced beat width, as expected, 

however the biophysical cause of this reduction is not obvious. The incomplete power stroke of 

ida1 axonemes (Figure 3.13(a)) along with total absolute curvature (Figure 3.10) suggest the 

reduction in ida1 stroke width is due to early activation of the recovery stroke, not the actual 

minimum and maximum values of principal and reverse bend curvatures (Figure 3.9). In 

contrast, oda2 cells are able to maintain a wide beat despite lower average curvature values 

(Figure 3.10). These cells complete more of the recovery stroke before the power stroke begins, 

allowing a wider stroke (Figure 3.13(b)). 

Mutants lacking inner dynein arm I1/f respond to increased viscous loads by switching earlier in 

the power stroke. This implies a significant role for force feedback in regulating activity of 

dynein arms other than I1. King (2010) has described a mechanism for force-feedback in the 

outer dynein arms based on  tension sensing by the  γHC-LC1-LC4- microtubule complex [101]. 

Lindemann and his co-authors [79], [82] have presented a large body of evidence in support of a 

relationship between interdoublet-spacing, transverse force, and dynein activity. Since the 

transverse force is roughly proportional to the product of cumulative dynein force and curvature 

[84], it is plausible that at high viscosity the threshld levels of transverse force required for 

switching are reached earlier in the stroke. In contrast, mutants with I1 delay switching until the 

power stroke is complete. The differences in timing suggest that the primary role of the I1 dynein 

arm may be to restrict inter-doublet separation, and delay the point in the cycle when inter-

doublet separation leads to switching. This effect is amplified in the mutants lacking outer 

dynein arms, suggesting that the outer arms may be most responsive to inter-doublet separation. 
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The uni1 mutants were the only cell type to exhibit significant increases in curvature magnitudes 

with viscosity (Figure 3.9). This suggests that all dynein arms are required to produce enough 

force and power to affect flagella deformation at increased viscosity loads. Inner or outer dynein 

arms alone do not produce enough force to overcome the additional resistance; rather the flagella 

decrease their speed to reduce the viscous load. While maximum and minimum bend values are 

similar among genetic variants (Figure 3.9), the average curvature magnitudes (Figure 3.10) 

suggest that oda2 cells maintain less force. Overall, this study provides evidence that both the 

outer dynein arms and inner-arm dynein I1 (f) are important for flagellar power generation, but 

that the differences in their behavior and roles are amplified at high viscosities. 

This work has provided a basis for study of specific flagellar waveform response to mechanical 

loading. We have identified beat frequency and beats per cell revolution as important parameters 

in quickly estimating the ability of the flagellum to generate power, supported by in-depth 

waveform analysis. We have confirmed that inner arm dynein I1 (f) is particularly important for 

maintaining stroke width at high viscosities, while outer dynein arms are important for 

maintaining beat frequency at any viscosity [92], [93], [100], [102]. Both inner and outer arms 

appear to play a role in the feedback mechanism that produces oscillations. The methods 

presented give a dense mathematical description of periodic flagellar waveform, however more 

work remains to be done in applying these techniques to non-periodic observations.  

Next steps include the comparison of experimental data with mathematical modeling schemes. 

Currently little work has been done to evaluate the predictive capabilities of various flagellar 

models – the data presented here may be helpful in evaluating models based on their predictions 

of flagellar response to increased viscosity. Finally, investigation of different structural mutants 
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will continue to add insight regarding the specific roles of different motor proteins within the 

flagellar axoneme.  
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Chapter 4 

 

Methods for Mathematical Modeling of 

Flagella Motion 

 

Mathematical modeling of the flagellum is based on analysis of the flagellum as a slender beam 

in viscous fluid. In this chapter, the nonlinear governing equations of motion are derived from 

first principles following the method of Hines and Blum [78]. 

4.1 Introduction and Motivation 
Mathematical models are formal, quantitative hypotheses about the mechanisms of observed 

processes; their main function is to lend insight to the driving forces behind those processes. 

Models are most useful when they can be directly tested by comparison to quantifiable biological 

measurements. A complete model of all axoneme proteins may not be necessary for enhancing 

understanding of dynein regulation; even basic models help clarify the governing principles 

behind waveform generation. A good model is one that not only captures the behavior of the 

system under ‘normal’ conditions, but which is able to predict the performance of the system 

under different experimental tests. 

4.2 Background 
Brokaw mathematically confirmed the sliding filament theory of flagellar regulation [2] based on 

micrographs of Satir, 1965 [103]. Subsequently a full derivation of nonlinear beam mechanics 

was published in 1978 by Hines and Blum [78]. This model provides a concise description of the 
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flagellum as a two-dimensional beam based on an understanding of solid mechanics and simple 

hydrodynamic resistance. The derived equations of motion accurately describe motion of a 

nonlinear slender beam in viscous fluid; the uncertainty in flagella models primarily lies in 

defining the force generation term (biologically, this corresponds primarily to the contributions 

of dynein arms to flagellar bending). Ambiguity in flagellar models surrounds this term, as the 

complete activation mechanism of the dynein motor remains unknown [75]–[77]. We 

hypothesize that mechanical feedback is important in the regulation of flagellar dyneins. In this 

chapter, I will review the basic assumptions of the Hines and Blum model and outline the 

derivation of the governing equations of motion. Both the sliding-controlled and geometric 

clutch models, as well as the original curvature-controlled model of Hines and Blum [78], are 

based on this initial nonlinear system of equations with different assumptions regarding the form 

of the active shear force term. 

4.3 General Equations of Flagella Motion 
 

 
Figure 4.1 – Flagellum schematics 

(a) Diagram of cell body and flagellum showing position vector 𝑟 and tangent angle 𝜓. (b) 

Schematic of flagellum as cantilever beam showing tangent angle 𝜓(𝑠, 𝑡), displacement Δ(𝑠, 𝑡), 

beam diameter 𝑎, and shear force 𝑓(𝑠, 𝑡). 
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This derivation follows the seminal paper of Hines and Blum (1978); some details are added for 

clarification. The flagellum is modeled as an elastic beam in viscous fluid driven by internal 

forces. 

4.2.1 Kinematics 

 

Flagella shape is defined by the tangent angle which may vary with respect to time and space, 

𝜓(𝑠, 𝑡), as shown in Figure 4.1. Position along the beam is defined by the space variable 𝑠, 

located a vector 𝑟 from the reference frame (Figure 4.1(a)). Following the original derivations of 

Hines and Blum, we define normal and tangent unit vectors relative to the beam: 

 
𝑒𝑇⃗⃗⃗⃗⃗ = [𝑐𝑜𝑠𝜓, 𝑠𝑖𝑛𝜓] =

𝜕𝑟

𝜕𝑠
 

(4.3) 

 𝑒𝑁⃗⃗⃗⃗⃗ = [−𝑠𝑖𝑛𝜓, 𝑐𝑜𝑠𝜓] (4.4) 

Thus 

 𝜕𝑒𝑇⃗⃗⃗⃗⃗

𝜕𝑠
= [−𝑠𝑖𝑛𝜓, 𝑐𝑜𝑠𝜓]

𝜕𝜓

𝜕𝑠
=

𝜕𝜓

𝜕𝑠
𝑒𝑁⃗⃗⃗⃗⃗ 

(4.5) 

 𝜕𝑒𝑁⃗⃗⃗⃗⃗

𝜕𝑠
= [−𝑐𝑜𝑠𝜓,−𝑠𝑖𝑛𝜓]

𝜕𝜓

𝜕𝑠
= −

𝜕𝜓

𝜕𝑠
𝑒𝑇⃗⃗⃗⃗⃗ 

(4.6) 
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4.2.2 Equilibrium Conditions 

 
Figure 4.2 – Free body diagram of a differential element of a beam in viscous fluid 

Tangential 𝑇 and normal 𝑁 force within the beam are shown along with internal moment 𝑀. 

Internal forces are lumped into the distributed force 𝑓𝑇𝑑𝑠 and distributed normal force 𝑓𝑁𝑑𝑠. 

Distributed viscous resistance in the tangential and normal directions is labeled 𝑞𝑇𝑑𝑠 and 𝑞𝑁𝑑𝑠, 

respectively. Internal active shear is balanced by an unknown internal resistance (blue rectangle) 

which can support normal and tangential forces as well as the applied moment due to dynein 

activity 

 

Considering the flagellum as a single, continuous beam, we can define the developed tangential 

and normal forces at any point (𝑇 and 𝑁) over a differential element as shown in Figure 4.2. The 

active force component (dynein contribution to motion) is represented by the distributed shear 

force couple 𝑓𝑇𝑑𝑠 (green arrows) acting along the length of the beam. A force balance on the 

representative element shown in Figure 4.2 becomes (eliminating balanced forces): 

 𝜕𝑁⃗⃗⃗

𝜕𝑠
𝑑𝑠 +

𝜕𝑇⃗⃗

𝜕𝑠
𝑑𝑠 + 𝑞𝑁⃗⃗ ⃗⃗⃗𝑑𝑠 + 𝑞𝑇⃗⃗⃗⃗⃗𝑑𝑠 = 0 

(4.7) 

Considering the identities 𝑁⃗⃗⃗ = N𝑒𝑁⃗⃗⃗⃗⃗; 𝑇⃗⃗ = T𝑒𝑇⃗⃗⃗⃗⃗ , using chain rule and Equations (4.5)and (4.6): 

 
𝑁

𝜕𝑒𝑁⃗⃗⃗⃗⃗

𝜕𝑠
+

𝜕𝑁

𝜕𝑠
𝑒𝑁⃗⃗⃗⃗⃗ + 𝑇

𝜕𝑒𝑇⃗⃗⃗⃗⃗

𝜕𝑠
+

𝜕𝑇

𝜕𝑠
𝑒𝑇⃗⃗⃗⃗⃗ + 𝑞𝑁⃗⃗ ⃗⃗⃗ + 𝑞𝑇⃗⃗⃗⃗⃗ = 0 

(4.8) 
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−𝑁

𝜕𝜓

𝜕𝑠
𝑒𝑇⃗⃗⃗⃗⃗ +

𝜕𝑁

𝜕𝑠
𝑒𝑁⃗⃗⃗⃗⃗ + 𝑇

𝜕𝜓

𝜕𝑠
𝑒𝑁⃗⃗⃗⃗⃗ +

𝜕𝑇

𝜕𝑠
𝑒𝑇⃗⃗⃗⃗⃗ + 𝑞𝑁𝑒𝑁⃗⃗⃗⃗⃗ + 𝑞𝑇𝑒𝑇⃗⃗⃗⃗⃗ = 0 

(4.9) 

Separating into normal and tangential components: 

 
−𝑁

𝜕𝜓

𝜕𝑠
+

𝜕𝑇

𝜕𝑠
+ 𝑞𝑇 = 0 

(4.10) 

 𝜕𝑁

𝜕𝑠
+ 𝑇

𝜕𝜓

𝜕𝑠
+ 𝑞𝑁 = 0 

(4.11) 

A moment balance about the left side of the beam (ignoring higher-order terms) gives: 

 𝜕𝑀𝐵

𝜕𝑠
+ 𝑁 − 𝑎𝑓 = 0 

(4.12) 

4.2.3 Constitutive Relations 

To specify the normal and tangential distributed loads due to fluid, we consider resistive force 

theory [78], [104]. The fluid at very low Reynolds number (Stokes flow) is assumed to provide a 

force proportional but opposite to velocity [78], appropriate here due to the very small length 

scales (even for a biflagellate cell traveling at 100 µm/s in regular media, 𝑅𝑒 ≈ 3𝑥10−10 ≪ 1). 

The velocity of any point along the flagellum can be written in terms of tangential and normal 

components:  𝑣⃗ = 𝑣𝑇𝑒𝑇⃗⃗⃗⃗⃗ + 𝑣𝑁𝑒𝑁⃗⃗⃗⃗⃗. The spatial derivatives of the components of velocity are 

(again, based on the identities of Equations (4.5) and (4.6)): 

 𝜕𝑣𝑇

𝜕𝑠
= 𝑣𝑁

𝜕𝜓

𝜕𝑠
 

(4.13) 

 𝜕𝑣𝑁

𝜕𝑠
=

𝜕𝜓

𝜕𝑡
− 𝑣𝑇

𝜕𝜓

𝜕𝑠
 

(4.14) 

The viscous resistive force, 𝑞, can be written in component form as:  

 𝑞𝑇 = −𝑐𝑇𝑣𝑇 (4.15) 
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 𝑞𝑁 = −𝑐𝑁𝑣𝑁 (4.16) 

Finally, the constitutive equation for the bending moment of a beam with flexural rigidity 𝐸𝐼 is 

needed to derive the complete equations of motion of the beam under the given constraints: 

 
𝑀𝐵 = 𝐸𝐼

𝜕𝜓

𝜕𝑠
 

(4.17) 

4.2.4 Derivation Steps 

First, Equation (4.11) is combined with Equation (4.16) and differentiated with respect to space: 

 𝜕𝑁

𝜕𝑠
+ 𝑇

𝜕𝜓

𝜕𝑠
− 𝑐𝑁𝑣𝑁 = 0 

(4.18) 

 𝜕2𝑁

𝜕𝑠2
+ 𝑇

𝜕2𝜓

𝜕𝑠2
+

𝜕𝑇

𝜕𝑠

𝜕𝜓

𝜕𝑠
− 𝑐𝑁

𝜕𝑣𝑁

𝜕𝑠
= 0 

(4.19) 

Substituting Equation (4.14): 

 𝜕2𝑁

𝜕𝑠2
+ 𝑇

𝜕2𝜓

𝜕𝑠2
+

𝜕𝑇

𝜕𝑠

𝜕𝜓

𝜕𝑠
− 𝑐𝑁(

𝜕𝜓

𝜕𝑡
− 𝑣𝑇

𝜕𝜓

𝜕𝑠
) = 0 

(4.20) 

 𝜕2𝑁

𝜕𝑠2
+ 𝑇

𝜕2𝜓

𝜕𝑠2
+

𝜕𝑇

𝜕𝑠

𝜕𝜓

𝜕𝑠
− 𝑐𝑁

𝜕𝜓

𝜕𝑡
+ 𝑐𝑁𝑣𝑇

𝜕𝜓

𝜕𝑠
= 0 

(4.21) 

Combining Equations (4.10) and (4.15): 

 
𝑐𝑇𝑣𝑇 = −𝑁

𝜕𝜓

𝜕𝑠
+

𝜕𝑇

𝜕𝑠
 

(4.22) 

Combining Equations (4.22) and (4.21): 

 𝜕2𝑁

𝜕𝑠2
+ 𝑇

𝜕2𝜓

𝜕𝑠2
+

𝜕𝑇

𝜕𝑠

𝜕𝜓

𝜕𝑠
− 𝑐𝑁

𝜕𝜓

𝜕𝑡
+

𝑐𝑁

𝑐𝑇
(−𝑁

𝜕𝜓

𝜕𝑠
+

𝜕𝑇

𝜕𝑠
)
𝜕𝜓

𝜕𝑠
= 0 

(4.23) 

Thus, the beam tangent angle 𝜓 may be described by net tangential forces 𝑇 and normal forces 

𝑁. Combining equations (4.12) and (4.17): 
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𝐸𝐼

𝜕2𝜓

𝜕𝑠2
+ 𝑁 − 𝑎𝑓 = 0 

(4.24) 

Rearranging Equation (4.24) and substituting 𝑁 and its spatial derivatives into Equation (4.23): 

𝑎
𝜕2𝑓

𝜕𝑠2
− 𝐸𝐼

𝜕4𝜓

𝜕𝑠4
+ 𝑇

𝜕2𝜓

𝜕𝑠2
+

𝜕𝑇

𝜕𝑠

𝜕𝜓

𝜕𝑠
− 𝑐𝑁  

𝜕𝜓

𝜕𝑡
+

𝑐𝑁

𝑐𝑇

(
𝜕𝑇

𝜕𝑠
− (𝑎𝑓 − 𝐸𝐼

𝜕2𝜓

𝜕𝑠2
)

𝜕𝜓

𝜕𝑠
)

𝜕𝜓

𝜕𝑠
= 0 

(4.25) 

Thus, we have an equation that relates the tension in the beam 𝑇(𝑠, 𝑡) and the tangent angle 

𝜓(𝑠, 𝑡), to the internal shear force 𝑓(𝑠, 𝑡), and the constants 𝑎, 𝐸𝐼, 𝑐𝑁 , 𝑐𝑇 . 

Similarly, starting with Equation (4.10), combined with Equation (4.15) and taking a spatial 

derivative: 

 
−𝑁

𝜕2𝜓

𝜕𝑠2
−

𝜕𝑁

𝜕𝑠

𝜕𝜓

𝜕𝑠
+

𝜕2𝑇

𝜕𝑠2
+ −𝑐𝑇

𝜕𝑣𝑇

𝜕𝑠
= 0 

(4.26) 

Substituting Equation (4.13): 

 
−𝑁

𝜕2𝜓

𝜕𝑠2
−

𝜕𝑁

𝜕𝑠

𝜕𝜓

𝜕𝑠
+

𝜕2𝑇

𝜕𝑠2
+ −𝑐𝑇𝑣𝑁

𝜕𝜓

𝜕𝑠
= 0 

(4.27) 

Combining Equations (4.11) and (4.16): 

 
𝑐𝑁𝑣𝑁 =

𝜕𝑁

𝜕𝑠
+ 𝑇

𝜕𝜓

𝜕𝑠
 

(4.28) 

Combining Equations (4.27) and (4.28): 

 
−𝑁

𝜕2𝜓

𝜕𝑠2
−

𝜕𝑁

𝜕𝑠

𝜕𝜓

𝜕𝑠
+

𝜕2𝑇

𝜕𝑠2
−

𝑐𝑇

𝑐𝑁

𝜕𝜓

𝜕𝑠
(
𝜕𝑁

𝜕𝑠
+ 𝑇

𝜕𝜓

𝜕𝑠
) = 0 

(4.29) 

Substituting for N (from Equation (4.24)) and its first spatial derivative: 

−(𝑎𝑓 − 𝐸𝐼
𝜕2𝜓

𝜕𝑠2
)
𝜕2𝜓

𝜕𝑠2
− (𝑎

𝜕𝑓

𝜕𝑠
− 𝐸𝐼

𝜕3𝜓

𝜕𝑠3
)
𝜕𝜓

𝜕𝑠
+

𝜕2𝑇

𝜕𝑠2
+

𝐶𝑇

𝐶𝑁

𝜕𝜓

𝜕𝑠
((𝑎

𝜕𝑓

𝜕𝑠
− 𝐸𝐼

𝜕3𝜓

𝜕𝑠3
) + 𝑇

𝜕𝜓

𝜕𝑠
) = 0 

(4.30) 
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Thus, the complete description of beam behavior is given by Equations (4.30) and (4.25), 

rearranged here, where (. ),𝑧 =
𝜕(.)

𝜕𝑧
: 

𝜓,𝑡 =
1

𝐶𝑁

(−𝐸𝐼𝜓,𝑠𝑠𝑠𝑠 + 𝑎𝑓,𝑠𝑠 + 𝑇,𝑠𝜓,𝑠 + 𝑇𝜓,𝑠𝑠) +
1

𝐶𝑇
(𝐸𝐼(𝜓,𝑠)

2
𝜓,𝑠𝑠 − 𝑎𝑓(𝜓,𝑠)

2
+ 𝑇,𝑠𝜓,𝑠) 

(4.31) 

𝑇,𝑠𝑠 − (𝑎𝑓 − 𝐸𝐼𝜓,𝑠𝑠)𝜓,𝑠𝑠 − (𝑎𝑓,𝑠 − 𝐸𝐼𝜓,𝑠𝑠𝑠)𝜓,𝑠 −
𝐶𝑇

𝐶𝑁

(𝑎𝑓,𝑠 − 𝐸𝐼𝜓,𝑠𝑠𝑠 + 𝑇𝜓,𝑠)𝜓,𝑠 = 0 
(4.32) 

Equations (4.31) and (4.32) match both the original derivations by Hines and Blum [78] and a 

more recent examination by Hilfinger [77] and condense the general system of Equations (4.23), 

(4.29), and (4.24). 

4.3 Discussion 
In summary, a model of the flagellum as a nonlinear slender beam in viscous media can be 

derived from first principles. Equations (4.23), (4.24), and (4.29) present a system of equations 

with 3 dependent variables: the tension in the beam 𝑇(𝑠, 𝑡), the shear angle 𝜓(𝑠, 𝑡), and the total 

internal shear force term 𝑓(𝑠, 𝑡). In order to solve these equations, a relationship between total 

internal shear force (including both passive and active elements) and beam motion is needed. 

This relationship defines the regulation of dynein that produces inter-doublet sliding and 

consequent bending of the flagellum. 

A brief examination of Equations (4.31) and (4.32) reveals significant nonlinearity in beam 

motion, even for a simplified 2D model of the axoneme. Beating flagella reflect this aspect of the 

model when amplitudes are finite; a consequence is that, in general, solutions are not 

straightforward. We examine closed-form solutions through eigenanalysis of linearized equations 

of motion to determine modes of oscillation, particularly unstable modes which correspond to 

spontaneous oscillation. In addition, we consider the full nonlinear system and simulate solutions 
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using a time-marching approach. These methods and their results are described in the following 

two chapters.  
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Chapter 5 

 

Unstable Modes in a Model of Sliding-

Controlled Dynein Activity
1
  

 

Dynein acts to slide adjacent microtubule doublets relative to one another. This motion, coupled 

with elastic constraints within the axoneme, drives the generation of bends and subsequent 

movement of the flagellum. One of the first mathematical models of flagellar activity proposed 

this sliding activity itself as the feedback mechanism for dynein regulation. A more recent 

formulation of this concept [75] shows an ability to match observed experimental data, but does 

not consider all possible solutions. This prior study identified a propulsive, periodic solution of 

the linearized version of the sliding-controlled model, which closely resembles observed 

behavior. However, unstable, non-propulsive solutions exist at the same parameter values. The 

stability of identified modes is important for understanding their physical relevance. 

5.1 Introduction and Motivation 
The sliding of filaments (microtubule doublets) within the axoneme was discovered in 1965 

through analysis of micrographs produced by Satir [103]. Considering these micrographs, 

Charles Brokaw proposed a theory of bend propagation controlled by sliding between filaments 

[2], later expanded to include curvature-controlled feedback. Another model of dynein regulation 

was recently proposed by Riedel-Kruse et al in which dynein activity depends only on sliding 

                                                 
1
 Analysis of unstable modes of the SC model presented in this chapter was published as part of an article in the 

Journal of the Royal Society Interface [123]. KW contributed to equation derivations including closed-form 

eigenvalue analysis and Matlab modeling, along with discussion of stability of both cases. 



www.manaraa.com

59 

between doublets on opposite sides of the flagellum [75]. The derived ‘sliding-controlled’ (SC) 

model results in periodic oscillations under certain conditions, however the analysis is 

incomplete without examination of the possibility of co-existing unstable modes. This chapter 

recapitulates the analysis of the sliding-controlled model of Riedel-Kruse in a more general form 

to allow identification of both stable and unstable modes. It is found that unstable modes exist at 

the same parameter values that correspond to periodic solutions found by the authors of the 

previous study; thus the periodic modes are not of physical importance. 

5.2 Linearized Equation of Motion and Shear Force 
In order to understand flagellar oscillations, Riedel-Kruse et-al linearized the set of equations of 

motion derived in Chapter 4 [75]. After eliminating all higher-order terms from Equations (4.31) 

and (4.32) (those that include more than one dependent variable 𝑇, 𝑓, or 𝜓), a single linear 

equation remains (where (. ),𝑧 =
𝜕(.)

𝜕𝑧
): 

 𝐸𝐼𝜓,𝑠𝑠𝑠𝑠 − 𝑎𝑓,𝑠𝑠 + 𝐶𝑁𝜓,𝑡 = 0 (5.1)  

Examining this equation shows the tangent angle of the flagellum, 𝜓, is dependent on a viscous 

term 𝐶𝑁
𝜕𝜓

𝜕𝑡
, the flexural rigidity of the microtubule doublet structure  𝐸𝐼𝜓,𝑠𝑠𝑠𝑠, and the total 

internal shear 𝑎𝑓,𝑠𝑠. 

Riedel-Kruse et al propose an internal shear force term 𝑓(𝑠, 𝑡) that depends on the relative 

doublet displacement  𝛥(𝑠, 𝑡) and on relative sliding velocity of doublets on opposite sides of the 

beam, 
𝜕𝛥(𝑠,𝑡)

𝜕𝑡
 (a schematic of the relative doublet displacement Δ is shown in Figure 5.1) [75]. 
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Figure 5.1 – Schematic of sliding displacement 

Diagram showing relationship between tangent angle 𝜓 and relative displacement of doublets Δ 

for a beam with diameter 𝑎 (a more detailed beam representation can be found in Figure 4.1). 

 

The sliding-controlled equation for active internal shear force 𝑓 is defined in (5.2). Shear 

increases with 𝛿𝑝(𝑠, 𝑡), the incremental change in probability of dynein attachment, and 

decreases with sliding velocity (note active force is assumed negative here): 

 
𝑓(𝑠, 𝑡) = −2𝜌𝑓̅𝛿𝑝 + 2𝜌𝑝̅𝑓′

𝜕𝛥

𝜕𝑡
 

(5.2) 

Where 𝜌 is the linear density of dynein arms; 𝑓 ̅is the maximum force per dynein arm, 𝑝̅ is the 

mean baseline probability of dynein head attachment, and 𝑓′ is the magnitude of the slope of the 

dynein force-velocity curve. Because the force per dynein head decreases with velocity (𝑓′is 

negative), dynein cross-linking probability changes in response to sliding speed, as described by 

the equation: 

 𝜕(𝛿𝑝)

𝜕𝑡
=

1

𝜏
(
𝑝̅(1 − 𝑝̅)𝑓′

𝑓𝑐
 
𝜕𝛥

𝜕𝑡
− 𝛿𝑝) 

(5.3) 

Where 𝜏 is the characteristic time for this effect, and 𝑓𝑐 is a characteristic force for crosslink 

detachment. This relationship can lead to an increase in net shear force in response to increasing 
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sliding velocity and displacement, which is mathematically equivalent to negative friction or 

negative stiffness. While counterintuitive, this response is biologically reasonable considering 

the active force contributions of dynein along the length of the flagellum. 

5.3 Eigenvalue Problem 
Riedel-Kruse et al propose a form of solution to Equation (5.1) by hypothesizing 𝜓 is separable: 

𝜓(𝑠, 𝑡) = 𝐴(𝑠)𝐵(𝑡) [75]. This allows examination of mode shapes 𝐴(𝑠) for a prescribed time 

response 𝐵(𝑡). Riedel-Kruse proposed a purely periodic time function 𝐵(𝑡) = 𝑒𝑛𝑖𝜔𝑡 which 

permits identification of only periodic modes at frequencies 𝑛𝜔. However, more generally 𝐵(𝑡) 

can take many different forms, including solutions that increase with time. To allow 

identification of both stable and unstable modes, we generalize the assumed time function as 

𝐵(𝑡) = 𝑒𝜎𝑛𝑡 where 𝜎𝑛 = 𝛼𝑛 + 𝑖𝜔𝑛(both 𝛼𝑛 and 𝜔𝑛 are real). The assumed form of the resulting 

waveform becomes: 

 
𝜓(𝑠, 𝑡) = ∑ 𝐴𝑛𝜓̃(𝑛)(𝑠)𝑒𝜎𝑛𝑡

∞

𝑛=−∞

 
(5.4) 

Since we propose solutions to the linearized equation, each mode 𝜓̃(𝑛) is a solution along with 

any linear combination of modes. While the complete description of the beam shape 𝜓 may 

require many modes 𝑛, we consider just one Fourier mode (𝑛 = 1) following the method of 

Riedel-Kruse [75], and drop the subscript: 

 𝜓(𝑠, 𝑡) = 𝜓̃(𝑠) exp(𝜎𝑡) (5.5) 

Similarly, the other dependent variables 𝑓, Δ, and 𝛿𝑝 become: 

 𝑓(𝑠, 𝑡) = 𝑓(𝑠) exp(𝜎𝑡) (5.6) 
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 Δ(𝑠, 𝑡) = Δ̃(𝑠) exp(𝜎𝑡) (5.7) 

 𝛿𝑝(𝑠, 𝑡) = 𝛿𝑝(𝑠) exp(𝜎𝑡) (5.8) 

By assigning a form to the time-dependent characteristics of the beam angle, the time-dependent 

viscous term in Equation (5.1) can be calculated and the overall governing equation becomes: 

 
𝐸𝐼

𝑑4𝜓̃

𝑑𝑠4
− 𝑎

𝑑2𝑓

𝑑𝑠2
+ 𝜎𝐶𝑁𝜓̃ = 0 

(5.9) 

The shear force shape function 𝑓(𝑠) can be expressed in terms of a complex mechanical 

impedance term 𝜒(𝜎): 

 𝑓(𝑠) = 𝜒(𝜎)𝛥̃(𝑠) (5.10) 

The inter-doublet separation shape function Δ̃(𝑠) is defined as shown in Figure 5.1, formalized in 

equation form below, where  Δ̃0 = Δ̃(0): 

 𝛥̃(𝑠) = 𝛥̃0 + 𝑎(𝜓̃(𝑠) − 𝜓̃(0)) (5.11) 

The complex impedance 𝜒(𝜎) is defined in terms of dynein kinetics by comparison to Equation 

(5.2). Substituting the assumed solutions of displacement 𝛥̃(𝑠) and probability of dynein 

attachment 𝛿𝑝(𝑠) (Equations (5.7) and (5.8)) into the equation governing cross-linking 

probability (5.3): 

 
𝛿𝑝(𝑠) =  

𝑝̅(1 − 𝑝̅)𝑓′

𝑓𝑐
 

𝜎

1 + 𝜎𝜏
𝛥̃(𝑠) 

(5.12) 

The expressions for 𝛿𝑝 and 𝛥̃(𝑠) are then substituted into the equation for shear force (5.2): 

 
𝑓(𝑠) = −2𝜌𝑓̅ [

𝑝̅(1 − 𝑝̅)𝑓′

𝑓𝑐
 

𝜎

1 + 𝜎𝜏
𝛥̃(𝑠)]  +  2𝜌𝑝̅𝑓′𝜎𝛥̃(𝑠) 

(5.13) 

The complex impedance, 𝜒(𝜎) can now written compactly in terms of the characteristic 

exponent, 𝜎: 
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𝜒(𝜎) =  

−𝐴𝜎

1 + 𝜎𝜏
+ 𝐵𝜎 

(5.14) 

 
𝐴 =

2𝜌𝑝̅(1 − 𝑝̅)𝑓𝑓̅′

𝑓𝑐
 

(5.15) 

 𝐵 = 2𝜌𝑝̅𝑓′ (5.16) 

Where the derived parameters 𝐴 and 𝐵 are real. For the special case of the neutrally-stable, 

periodic response the characteristic exponent 𝜎 = 𝑖𝜔, and 𝜒(𝑖𝜔) = 𝑘 + 𝑖𝜔𝜆 [75], [77]. The 

effects of the feedback-controlled dynein motors can be combined into dynamic stiffness (𝑘) and 

friction (λ) coefficients: 

 𝑘 = −𝐴𝜔2𝜏/(1 + 𝜔2𝜏2) (5.17) 

  𝜆 = (𝐵 − 𝐴)/(1 + 𝜔2𝜏2) (5.18) 

Passive stiffness and friction may also be included, but here these contributions are considered 

negligible [75]. The values of 𝑘 and 𝜆 are expected to both be negative, corresponding to an 

increase in net shear force in response to increasing doublet sliding rate. 

Substitution of identities (5.5) - (5.8), (5.10), and (5.11) into the linearized equation of motion 

(5.1) leads to an equation of motion dependent only on constants 𝐸𝐼, 𝑎, 𝑐𝑁 ,and complex 

impedance 𝜒(𝜎): 

 
𝐸𝐼

𝑑4𝜓̃

𝑑𝑠4
− 𝑎2𝜒

𝑑2𝜓̃

𝑑𝑠2
+ 𝜎𝑐𝑁𝜓̃ = 0 

(5.19) 

This equation can be translated to non-dimensional form using the parameters: 

 𝑠̅ = 𝑠/𝐿 (5.20) 

 𝜎 = 𝜎𝑐𝑁𝐿4/𝐸𝐼 (5.21) 
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 𝜒̅ = 𝜒𝑎2𝐿2/𝐸𝐼 (5.22) 

So that Equation (5.19) becomes: 

 𝜓̃′′′′ − 𝜒̅𝜓̃′′ + 𝜎𝜓̃ = 0 (5.23) 

Where (∙)′ =
𝑑(∙)

𝑑𝑠̅
. 

Boundary conditions of the beam are necessary to identify solutions of 𝜓̃(𝑠) which satisfy 

Equation (5.23). Because the base of the flagellum is fixed at the cell body, we assume cantilever 

beam conditions with a fixed base and free end. At the base, the beam can support forces and 

moments but has a zero tangent angle and zero angular time derivative. At the distal end of the 

beam there can be no residual forces or moments supported. These constraints can be stated 

mathematically (following substitution into Equation (5.1)): 

(i) Zero angle at base: 𝜓(0, 𝑡) = 0  

(5.24) 

(ii) Zero normal velocity at base: 𝐸𝐼𝜓,𝑠𝑠𝑠(0, 𝑡) − 𝑎𝑓,𝑠(0, 𝑡) = 0  

(iii) Zero moment at distal end: 𝐸𝐼𝜓,𝑠(𝐿, 𝑡) = 0  

(iv) Zero transverse force at distal end: 𝐸𝐼𝜓,𝑠𝑠(𝐿, 𝑡) − 𝑎𝑓(𝐿, 𝑡) = 0  

Using the identities of Equations (5.20) to (5.23), the nondimensional fixed-free nondimensional 

boundary conditions are: 

(i) Zero angle at base: 𝜓̃(0) = 0  

(5.25) 

(ii) Zero normal velocity at base: 𝜓̃′′′(0) − 𝜒̅𝜓̃′(0) = 0  

(iii) Zero moment at distal end: 𝜓̃′(1) = 0  

(iv) Zero transverse force at distal end: 𝜓̃′′(1) − 𝜒̅ (𝛥̅0 + 𝜓̃(1) − 𝜓̃(0)) = 0  
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Where 𝛥̅0 = 𝛥̃0/𝑎 describes the nondimensional inter-doublet sliding at the base [75]. We 

examined both the situations where basal sliding is real and dependent on separate stiffness 

parameters (Case 1) as well as the case where no basal sliding is permitted (Case 2) [75], [77]: 

Case 1: Sliding at the proximal end is resisted by base stiffness, 𝑘𝑠 , and friction, 𝛾𝑠: 

 
 

Γ =
𝜒̅

𝜒̅ + 𝑘̅𝑠 + 𝜎𝛾̅𝑠

 
(5.26) 

 
𝑘̅𝑠 =

𝑘𝑠𝑎
2𝐿

𝐸𝐼
 

(5.27) 

 𝛾̅𝑠 = 𝛾𝑠𝑎
2/(𝐿3𝑐𝑁) (5.28) 

leading to the expression:  

 
 𝛥̅0 = 𝛤 (𝜓̃(0) − ∫ 𝜓̃(𝑠̅)𝑑𝑠̅

1

0

) 
(5.29) 

 

Case 2: Sliding at the proximal end of the flagellum is prohibited: Δ̅0 = 0. 

It is important to note that even in Case 1 where relative sliding of the doublets at the base is 

permitted, the boundary conditions of (5.25) still apply (zero angle and zero normal velocity at 

the base 𝑠̅ = 0). 

5.4 Solution to the Eigenvalue Problem 
Solutions to the differential equation for the mode shape, Equation (5.23), are assumed to be of 

the form: 

 𝜓̃(𝑠̅) = 𝐴 𝑒𝛽𝑠̅ (5.30) 

Substitution of Equation (5.30) into Equation (5.23) gives the characteristic polynomial: 
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 𝛽4 − 𝜒̅𝛽2 + 𝜎 = 0 (5.31) 

The roots of Equation (5.31) are values of the characteristic (space) exponent, 𝛽1, 𝛽2, 𝛽3,  𝛽4. 

For a given value of 𝜒̅, the general solution to Equation (5.23) can be constructed using 𝛽1−4 

from Equation (5.31): 

 𝜓̃(𝑠̅) = 𝐴1𝑒
𝛽1𝑠̅ + 𝐴2𝑒

𝛽2𝑠̅ + 𝐴3𝑒
𝛽3𝑠̅ + 𝐴4𝑒

𝛽4𝑠̅ (5.32) 

Substituting this general solution (5.32) into boundary condition Equations (5.25) leads to a 

matrix equation of the form given in Equation (5.33), below, with 4 unknowns (𝐴𝑛) for each 

value of the characteristic exponent 𝛽𝑛 (roots of equation (5.31)). Equations (5.26) to (5.29) can 

be used to eliminate Δ̅0 from boundary condition Equation (5.25)(iv): 

[
 
 
 
 
 
⋯ 1 ⋯
⋯ 𝛽𝑛

3 − 𝜒̅𝛽𝑛 ⋯

⋯ 𝛽𝑛𝑒𝛽𝑛 ⋯

⋯  𝛽𝑛
2𝑒𝛽𝑛 + 𝜒̅ (1 − Γ − 𝑒𝛽𝑛 +

Γ

𝛽𝑛
(𝑒𝛽𝑛 − 1)) ⋯

]
 
 
 
 
 

{

𝐴1

𝐴2

𝐴3

𝐴4

} = {

0
0
0
0

},  n=1, 2, 3, 4 (5.33) 

If sliding at the base is not permitted (Case 2), the base compliance parameter Γ = 0 and the 

matrix becomes: 

[
 
 
 
⋯ 1 ⋯
⋯ 𝛽𝑛

3 − 𝜒̅𝛽𝑛 ⋯

⋯ 𝛽𝑛𝑒𝛽𝑛 ⋯

⋯  𝛽𝑛
2𝑒𝛽𝑛 + 𝜒̅(1 − 𝑒𝛽𝑛) ⋯]

 
 
 

{

𝐴1

𝐴2

𝐴3

𝐴4

} = {

0
0
0
0

},  n=1, 2, 3, 4 (5.34) 

Note that the values of 𝛽𝑛 in the matrices above depend not only on the physical parameters of 

the model, but also on the characteristic exponent, or eigenvalue, 𝜎 via 𝜒̅(𝜎). For a specific 

parameter set, the eigenvalue problem can thus be written compactly as: 

 𝐌(𝜎) ⋅ 𝒂 = 𝟎    𝒂 = [𝐴1, 𝐴2, 𝐴3, 𝐴4]
𝑇
 (5.35) 

Non-trivial solutions are found by seeking values of 𝜎 that lead to: 
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 𝐷(𝜎̅) = det 𝐌(𝜎̅) = 0 (5.36) 

Eigenvalues 𝜎𝑚 are found at the zeros of 𝐷(𝜎̅) (or minima of |𝐷(𝜎̅)|). Mode shapes are found by 

seeking vectors 𝒂(𝑚) that span the corresponding null-space of the matrix, 𝐌(𝜎̅𝑚); this is 

accomplished by singular value decomposition. The mode shape 𝜓̃(𝑚)(𝑠̅) is then reconstructed 

by substituting values for 𝐴𝑛
(𝑚)

 and 𝛽𝑛
(𝑚)

 (coefficients and roots corresponding to the eigenvalue 

𝜎𝑚) into Equation (5.32). 

5.5 Results and Stability 

5.5.1 Case 1: Finite Sliding Compliance at the Base 

 

Modes from eigenvalue analysis 

A sliding-controlled model with fixed-free boundary conditions and sliding permitted at the base 

was analyzed by the direct solution approach described above[75], [77]. Sliding at the base was 

opposed by finite positive stiffness (𝑘𝑠 = 94.8 × 10−3 N/m) and friction (𝛾𝑠 = 0.273 × 10−3 N-

s/m) as in [75]. Other parameters were chosen to match the mechanical impedance used by [75]; 

all parameters are listed in Table 5.1. These parameters lead to negative effective shear stiffness 

(𝑘 = −1620 N/m
2
) and friction (𝜆 = −7.60 N-s/m

2
) in the flagellum for the 20.6 Hz mode 

discussed by Riedel-Kruse [75]. 
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Table 5.1 – Parameter values for sliding-controlled model with base sliding 

(Case 1) [75] 

Parameter Value Units Description 

𝑐𝑁 0.0034 pN-s/μm
2
 Normal resistive force coefficient   

𝑐𝑇 0.0017 pN-s/μm
2
 Tangent resistive force coefficient  (𝑐𝑇 ≈

𝑐𝑁/2) 

𝑎 0.185 µm Effective diameter of flagellum 

𝐿 58.3 µm Length of flagellum 

𝐸𝐼 1700 pN-μm
2
 Flexural rigidity of flagellum 

𝜏 0.004 s Dynein time constant 

𝑝̅ 0.03 1 Mean probability of crosslinking 

𝑓 ̅ 3.8 pN Dynein stall force 

𝑓𝐶 2.0 pN Characteristic force 

𝑓′ 1.8 pN-s/μm Slope of dynein force-velocity curve 

𝑘𝑠 94.8 × 10−3 pN/μm Sliding stiffness at base 

𝛾𝑠 0.273 × 10−3 pN-s/μm Sliding friction at base 

𝜌 150 1/μm Density of dynein motors 

𝑘3 800 pN/μm
4
 Nonlinear shear stiffness 

 

Characteristic exponents in the complex plane are found at local minima of the determinant 

magnitude, |𝐷(𝜎)|, shown in Figure 5.2 (a) - (b) (results are shown in terms of physical, rather 

than dimensionless, variables). Two important observations can be made. (i) A periodic solution 

(complex conjugate eigenfunctions with purely imaginary characteristic exponents: 𝜎 = 𝑖𝜔) 

exists. The frequency of this periodic mode corresponds precisely to the frequency (𝜔/2𝜋=20.6 

Hz) of the periodic mode reported by Reidel-Kruse et al in 2007 for these parameters [75]. (ii) 

Multiple unstable modes co-exist with this periodic mode over the range of  𝜎 examined here. 

Three of these unstable modes have characteristic exponents with positive real parts (Re(𝜎) =

𝛼 > 0). 
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Figure 5.2 – Eigenvalues from direct solution of the sliding-controlled flagella model 

(a) Images of the log magnitude of the determinant, ln |𝐷(𝜎)| (arbitrary units), are shown as a 

function of 𝜎 = 𝛼 + 𝑖𝜔 (Case 1; parameters in Table 5.1). Eigenvalues (characteristic exponents) 

are found at local minima (blue) of |𝐷(𝜎)|. Unstable modes have 𝛼 = 𝑅𝑒(𝜎) > 0. (b) Expanded 

view of panel (a) showing the eigenvalue at 𝜎 = 𝑖2𝜋 ∙ 20.6 corresponding to a 20.6 Hz periodic 

mode. (c) Eigenvalues were also calculated from the weighted-residuals method [105]: Paths of 

eigenvalues  𝜎 = 𝛼 + 𝑖𝜔 are shown in the complex plane as 𝑝̅ is varied (0 < 𝑝̅ < 0.04). Other 

parameters are as in Table 5.1. The red ‘x’ symbols denote the eigenvalues at the final value 

𝑝̅ = 0.04. The eigenvalues in panel (c) closely match the minima of  |𝐷(𝜎)| in panel (a). 

 

Mode shapes corresponding to the eigenvalues of Figure 5.2 are shown in Figure 5.3. The shape 

of the periodic mode at 20.6 Hz obtained here matches closely the shape of the periodic mode at 

the same frequency in [75]. The unstable modes of this model under the same conditions have 

not been described in prior studies. 
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Figure 5.3 – Unstable and neutrally-stable modes of the sliding-controlled model with sliding at 

the base (Case 1). 

(Left) The mode shape expressed in terms of tangent angle, 𝜓̃(𝑠̅). (Right) The mode shape 

expressed in terms of displacement 𝑦̃(𝑠̅). The real (solid) and imaginary (dashed) part of each 

mode is shown. Each mode corresponds to eigenvalue 𝜎 = 𝛼 + 𝑖𝜔: (a-b) 𝛼 = 51.3/s, 𝜔/
2𝜋 =3.3 Hz (unstable); (c-d) 𝛼 = 22.8/s,  𝜔/2𝜋 =22.5 Hz (unstable); (e-f) 𝛼 = 4.0/s,  𝜔/
2𝜋 =30.8 Hz (unstable);  (g-h) 𝛼 = 0.0/s,  𝜔/2𝜋 =20.6Hz (periodic). 

 

Unstable modes were investigated to determine frequency of oscillation and bend propagation 

direction. Figure 5.4(a) shows the frequency of the least stable unstable mode, as a function of 

the mean crosslinking probability, 𝑝̅, and flagellum length, 𝐿. The white region of the plot 

indicates parameter combinations for which unstable modes are absent, so the edge of the 

colored region indicates the stability boundary. Figure 5.4(b) displays the gradient of phase for 

the least stable mode, 
𝜕∠𝜓̃

𝜕𝑠
, at each parameter combination. If the mode exhibits proximal-to-

distal (anterograde) propagation, the phase gradient will be negative. For example, the phase 

gradient of the 20.6 Hz mode is negative. However, the phase gradient of the least stable mode is 
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positive for all parameter combinations in this model, indicating that retrograde (distal-to-

proximal) propagation is present in this model with these parameters. 

 
Figure 5.4 – Frequency of least stable mode and bend propagation direction, sliding-controlled 

model (Case 1) 

(a) Frequency 𝜔/2𝜋 (Hz) of the least stable mode of the sliding-controlled flagella model (Case 

1) as a function of flagella length, 𝐿, and mean probability of crosslinking, 𝑝̅. Other parameters 

are as in Table 5.1. At each parameter combination (𝑝̅, 𝐿) frequency is obtained from the 

imaginary part of the eigenvalue 𝜎 = 𝛼 + 𝑖𝜔 with largest real part (𝛼). (b) Median phase 

gradient, 
𝜕∠𝜓̃

𝜕𝑠
, of the least stable mode. Anterograde (proximal-distal) propagation corresponds to 

a phase gradient < 0, for 𝜔 > 0. For all parameter combinations shown here, the least stable 

mode exhibits phase gradient > 0 and thus retrograde propagation. 

 

Predicted behavior from simulation 

Numerical time-marching simulation allows exploration of nonlinear, transient and non-periodic 

behavior. Simulations of the full nonlinear system of flagellum equations were performed in the 

time domain with fixed-free boundary conditions to investigate the behavior of the sliding-

controlled dynein regulation model at finite amplitudes. Equations (4.23), (4.24), and (4.29) were 

modeled in a commercial finite element (FE) software package (COMSOL v4.3a, COMSOL, 

Inc., Burlington, MA) with values given in Table 5.1. 

Linearized models of the flagellum either omit elastic shear forces [75]or permit elastic force to 

remain proportional to displacement. In the real system, it is likely that forces from passive 
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components of the axoneme will increase nonlinearly with displacement [77]. Such nonlinearity 

does not affect the linear models above, but prevents unstable modes from growing without limit. 

Accordingly, in nonlinear simulations an additional restoring shear force proportional to the cube 

of the shear displacement was added. The simulated shear force becomes: 

 𝑓𝑠𝑖𝑚(𝑠, 𝑡) = 𝑓(𝑠, 𝑡) + 𝑘3𝛥
3 (5.37) 

The nonlinear restoring force of Equation (5.37) approximates the assumed stiffening behavior 

of elastic elements [77], [106]. When the linearized model is unstable, the value of 𝑘3 may 

determine the amplitude of simulated oscillations. In simulations, the value of the nonlinear 

coefficient 𝑘3 was adjusted to produce oscillations of comparable amplitude in each model. 

Simulations of the sliding-controlled model with sliding at the base (Case 1) lead to oscillatory 

waves with retrograde propagation (Figure 5.5). The positive mean value of tension at the base 

(𝑇0) and counter-clockwise loop of Figure 5.5(b-c) signify backward propulsive force 

(anterograde bend propagation). 

 
Figure 5.5 – Nonlinear simulation of sliding-controlled model with sliding at base (Case 1) 

(a) Successive snapshots of the flagellar waveform from time-marching simulations; color shows 

time increasing from blue (early) to red (later); (b) Time series of angle at tip 𝜓(𝑠 = 𝐿)  (top) 

and tension at base 𝑇0(𝑠 = 0) (bottom; 𝑇0 < 0 is propulsive); (c) Plot of 𝜓(3𝐿/4) vs 

𝜓(𝐿) (clockwise loop = anterograde propagation; counter-clockwise=retrograde); (d) 

Fundamental mode shape 𝑦(𝑠) from Fourier analysis of simulation. 
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5.5.2 Case 2: No sliding at the base 

Modes from eigenvalue analysis 

This case provides an opportunity for more extensive comparison to results from prior work [77], 

shown in Figure 5.6. Periodic modes were found by the direct solution method at frequencies 

from 1-100 Hz, using the same parameter values as in [77], given in Table 5.2. 

Table 5.2 – Parameter values for sliding-controlled model with no base sliding  

(Case 2) [75], [77] (  , 𝐸𝐼, 𝑎, 𝑐𝑁  are as in Table 5.1). 

Parameter Value Units Description 

𝑝̅ 0.01 1 Mean probability of crosslinking 

𝑓 ̅ 5.2 pN Dynein stall force 

𝑓𝐶 1.0 pN Characteristic force 

𝑓′ 0.5 pN-s/μm Slope of dynein force-velocity curve 

𝑘3 40 pN/μm
4
 Nonlinear shear stiffness 

 

Figure 5.6 shows the frequencies of all unstable modes found by the method of weighted 

residuals, at all values of the complex impedance, 𝜒. The frequency predictions from the 

weighted residual method at the boundaries of different solution regimes agree closely with the 

frequencies of periodic modes obtained by direct solution. These predictions also match 

corresponding results in [77]. The values of the complex impedance 𝜒 corresponding to periodic 

solutions are shown in Figure 5.6 (red markers); the frequency of each mode is plotted on the 

vertical axis of Figure 5.6(b). Figure 5.6(a) is directly comparable to Fig. 3 in [77]. For many of 

the parameter combinations at which periodic solutions exist, co-existing unstable modes are 

also found. 
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Figure 5.6 – Comparison of frequency of periodic solutions from direct analysis and weighted 

residual predictions, no base sliding (Case 2). 

(a) Frequency, 𝜔/2𝜋 (Hz), shown as a function of the mechanical impedance, 𝜒. The color scale 

in panels (a) and (b), and the vertical axis in panel (b) display the frequency of the least stable 

mode. Modes with zero frequency (white) are non-oscillatory. The plots show good agreement 

and periodic (neutrally-stable) solutions arise at transitions between solution regimes (described 

in [77]). 

 

Similar to Case 1, eigenvalues were computed using the method of weighted residuals for the 

sliding-controlled model (Equation (5.23)) with no sliding at the base (Case 2, other parameters 

are as in Table 5.2). Figure 5.7(a) shows the locations of eigenvalues for a range of parameters 

𝜎 = 𝛼 + 𝑖𝜔. The frequency and propagation direction of the least stable mode are shown in 

Figure 5.7(b)-(c) as functions of the length of the flagellum 𝐿 and mean probability of attachment 

𝑝̅. The neutrally stable mode at 28Hz, identified by eigenvalues on the imaginary axis in Figure 

5.7(a) and by the mode shape in Figure 5.8, matches the corresponding example result from [77]. 
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Figure 5.7 – Eigenvalues of the sliding-controlled model with no base sliding (Case 2) from the 

weighted residuals method 

(a) Paths of eigenvalues  𝜎 = 𝛼 + 𝑖𝜔 in the complex plane as baseline probability of dynein 

attachment, 𝑝̅, is varied (0 < 𝑝̅ < 0.01) in the sliding-controlled flagella model with no sliding at 

the base (Case 2). Other parameters are as in Table 5.2. The red ‘x’ symbols denote the 

eigenvalues at the final value: 𝑝̅ = 0.01. (b) Frequency 𝜔/2𝜋 (Hz) of the least stable mode of 

this model as a function of flagella length and 𝑝̅. Other parameters are as in Table 5.2. At each 

parameter combination (𝑝̅, 𝐿) frequency is obtained from the imaginary part (𝑖𝜔) of the 

eigenvalue 𝜎 = 𝛼 + 𝑖𝜔 with largest real part (𝛼). (c) Median phase gradient, 
𝜕∠𝜓̃

𝜕𝑠
, of the least 

stable mode. Anterograde (proximal-distal) propagation corresponds to a phase gradient < 0, for 

𝜔 > 0. For all parameter combinations shown here, the least stable mode exhibits phase gradient 

> 0 and thus retrograde propagation. 

 

 

 
Figure 5.8 – Mode shapes of the sliding-controlled model with no sliding at base (Case 2). 

The neutrally-stable, retrograde propagating mode corresponding to eigenvalue 𝜎 = 𝛼 + 𝑖𝜔:  

𝛼 = 0.0/s,  𝜔/2𝜋 =28 Hz, as described in [77]. (a) The mode shape expressed in terms of 

tangent angle, 𝜓̃(𝑠̅). (b) The mode shape expressed in terms of displacement 𝑦̃(𝑠̅). The real 

(solid) and imaginary (dashed) part of each mode is shown 
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Predicted behavior from simulation 

Modes of oscillation for Case 2 were also obtained from COMSOL simulations using parameters 

given by Table 5.2, including a nonlinear shear restoring force. The sliding-controlled model 

without sliding at the base (Case 2) exhibits non-propulsive, retrograde waves similar to the least 

stable mode of the linearized version (Figure 5.9). 

 
Figure 5.9 – Nonlinear simulation of sliding-controlled model with no sliding at base (Case 2) 

(a) Successive snapshots of the flagellar waveform from time-marching simulations; color shows 

time increasing from blue (early) to red (later); (b) Time series of angle at tip 𝜓(𝑠 = 𝐿)  (top) 

and tension at base 𝑇0(𝑠 = 0) (bottom; 𝑇0 < 0 is propulsive); (c) Plot of 𝜓(3𝐿/4) vs 

𝜓(𝐿) (clockwise loop = anterograde propagation; counter-clockwise=retrograde); (d) 

Fundamental mode shape y from Fourier analysis of simulation. 

 

Fourier analysis of the steady-state spatiotemporal pattern of 𝜓(𝑠, 𝑡) from simulation was 

performed along the time dimension (fft ;  Matlab
TM

, The Mathworks, Natick, MA) to obtain the 

frequency and shape of the fundamental mode of oscillation (Figure 5.5, Figure 5.9, Table 5.3). 

The relative contribution of the fundamental mode to the simulated response was measured by 

the ratio of its magnitude to the summed magnitudes of all the Fourier coefficients (Table 5.3). 

The similarity of the fundamental mode from simulation to the unstable modes of the linearized 

model (obtained by weighted residuals eigenanalysis) was measured by the amplitude of the 

correlation coefficient between the two shapes (corrcoef ;  Matlab
TM

, The Mathworks, Natick, 

MA; Table 5.3). 



www.manaraa.com

77 

Table 5.3 – Comparison of SC fundamental modes from simulation and direct eigenanalysis 

Underlined values correspond to the least stable mode. 

Model Simulation: 

Fundamental 

Frequency (Hz) 

Simulation:  

Relative  

Amplitude of 

Fundamental 

Mode 

Eigenanalysis: 

Frequencies of 

Unstable Modes 

(Hz) 

Correlation 

Coefficients: 

Simulation to 

Eigenanalysis 

Sliding 

controlled 

Case 1 

27.3 0.881 3.3 

22.5 

30.8 

20.6 

0.739 

0.667 

0.272 

0.354 

Sliding 

controlled 

Case 2 

31.3 0.972 28.0 0.974 

 

5.6 Discussion 
Unstable and neutrally-stable (periodic) modes were identified for the sliding-controlled model 

of flagella motion[75]–[77]. The sliding-controlled model is characterized by sliding impedances 

with negative effective stiffness and friction coefficients. We confirmed the existence of a 

periodic solution with the mode shape and frequency presented in [75] for the case of the fixed-

free flagellum at specific parameter values (Table 5.1). This periodic mode closely resembles 

observed flagella behavior. However, at the same parameter values that give rise to this neutrally 

stable periodic mode, multiple unstable modes exist, some of which exhibit retrograde (distal-to-

proximal) wave propagation. Such unstable modes would dominate the response of a physical 

system. The methods of Riedel-Kruse [75] are sufficient to identify periodic modes, but 

eliminate by definition the possibility of non-periodic (expanding) modes. The existence of 

unstable modes at the same parameter values suggests that the sliding-controlled hypothesis as 

formulated here is not sufficient to describe flagellar motion. 

The nonlinear versions of these models, which more closely approximate the physical situation, 

were explored by time-domain simulation. Even in the nonlinear regime, unstable modes of the 
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linearized models have pronounced effects on observed behavior. The results of this study 

complement the recent observation that distinct nonlinear modes of deformation in flagella 

models may arise at large amplitudes [107] leading to asymmetric waveforms. 

In conclusion, the existence of unstable retrograde (tip-to-base) modes in current sliding-

controlled models, with both fixed and sliding boundary conditions at the base, weakens the 

argument for this mechanism as the sole regulator of dynein coordination. The further 

development of mathematical models of flagella motion is a topic of active research; the stability 

properties and propagation directions of all modes should be considered in evaluating proposed 

mathematical models. 
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Chapter 6 

 

Mathematical Formulation of the Geometric 

Clutch Hypothesis
2
 

 

Dynein attachment and force generation, like many biological processes, is stochastic[55]. The 

principles governing dynein regulation are not necessarily prescribed steps, but the result of 

increased probability of attachment and subsequent force generation. In this chapter, the 

probability of dynein attachment is modeled as a function of inter-doublet separation. Principles 

of inter-doublet tension and curvature feedback are extended to a continuum model that displays 

anterograde (base-to-tip) bend propagation and Chlamydomonas-like waveforms. 

6.1 Introduction and Motivation 
In contrast to the displacement-driven control of the SC model, a dynein control model was 

proposed by Lindemann in 1994 in which transverse force across the axoneme diameter controls 

dynein binding. The geometric distance between adjacent microtubules governs the probability 

of dynein attachment, thus it has been referred to as a ‘geometric clutch’ (GC) [79], [80]. 

Discrete computer models were examined by Lindemann and give promising results to matching 

physical observations of flagella, however a continuum model of these processes, expressed as in 

terms of partial differential equations, has so far been lacking[80], [82]. In this chapter we 

explore and derive a complete continuum model of the axoneme. Here, local positive feedback in 

                                                 
2
 Formulation of the geometric clutch as a continuum model, presented in this chapter, is published in part in the 

Biophysical Journal [84]. KW contributed to equation derivations, figures, and discussions on stability. 
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dynein recruitment is balanced by global negative feedback associated with inter-doublet 

separation, which is driven in turn by curvature and the difference in doublet tension. 

6.2 Model: Two Doublet Pairs 
Generalizing to a continuum model, we split the axoneme into 2 sides: a principal bend side 

(labeled P in Figure 6.1, where active dynein forces generate a negative moment) and a reverse 

bend side (labeled R in Figure 6.1, where active dynein forces generate a positive moment). Note 

that the dynein activity is constant per side, but may oppose or contribute to passive shear 

forces/moments based on the local curvature of the flagellum (positive curvature is show in the 

upper part of Figure 6.1, negative curvature is shown in the bottom part of Figure 6.1). 
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Figure 6.1 – Schematic of two doublet-pair model 

The simplified GC model is based on two pairs of doublets driving flagellar bending. Side views 

of 𝑃 and 𝑅 doublet pairs show effective diameter 𝑎, active (green) and passive (red) shear forces 

( total shear given by 𝑓𝑇𝑃(𝑠, 𝑡) and 𝑓𝑇𝑅(𝑠, 𝑡) ) and internal doublet tension (𝑇1𝑃, 𝑇2𝑃, 𝑇1𝑅, 𝑇2𝑅). 

Schematic cross-sectional views illustrate activity of 𝑃 and 𝑅 doublet pairs on a simplified 

hexagonal axoneme structure (distortion is exaggerated). 𝑃 activity drives doublet 4 tip-ward 

relative to doublet 2; 𝑅 activity drives doublet 9 tip-ward relative to doublet 7. The dashed line 

segment, formed by connecting doublets 3 and 8, is normal to the beat plane. 
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6.3 Doublet Pair Interactions 

6.3.1 Equilibrium Equations 

 

 
Figure 6.2 – Free body diagram of a single doublet pair 

Each doublet, or filament, may support a tension 𝑇, normal force 𝑁, and moment 𝑀 (subscripts 

indicate doublet within the doublet pair; upper doublet is labeled 1, lower doublet is labeled 2). 

In addition, the doublet pair is subject to external viscous loads 𝑞𝑇 and 𝑞𝑁 and inter-doublet 

shear and normal forces: 𝑓𝑇 and 𝑓𝑁. 

 

We consider each bending side as a separate active system of two filaments (essentially a 

‘flattened’ equivalent construction of the axoneme) labeled 1 and 2. Within each doublet pair, we 

consider forces acting along and within each filament (doublet), 𝑇 and 𝑁, in addition to force and 

moment couples between the doublets: 𝑓𝑇 and 𝑓𝑁 (representing all shear components, both active 

and passive), and the external resistance to bending due to viscous fluid, 𝑞𝑇 and 𝑞𝑁  (Figure 6.2). 
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In the most general case, shear force is generated within the axoneme and is also resisted by 

passive elements. The resultant total shear force is given by the term 𝑓𝑇 and explored later in the 

context of specific dynein regulation mechanisms. Similar to derivations in Chapter 4, the 

equilibrium equations may be written for a differential element of each doublet as: 

 Doublet 1 Doublet 2  

𝒆𝑇 𝜕𝑇1

𝜕𝑠
− 𝑁1

𝜕𝜓1

𝜕𝑠
+ 𝑓𝑇 + 𝑞𝑇1 = 0 

𝜕𝑇2

𝜕𝑠
− 𝑁2

𝜕𝜓2

𝜕𝑠
− 𝑓𝑇 + 𝑞𝑇2 = 0 

(6.1) 

𝒆𝑁 𝜕𝑁1

𝜕𝑠
+ 𝑇1

𝜕𝜓1

𝜕𝑠
− 𝑓𝑁 + 𝑞𝑁1 = 0 

𝜕𝑁2

𝜕𝑠
+ 𝑇2

𝜕𝜓2

𝜕𝑠
+ 𝑓𝑁 + 𝑞𝑁2 = 0 

(6.2) 

The moment balance within a differential element along each doublet may be written: 

 𝜕𝑀𝐵1

𝜕𝑠
+

𝑎

2
𝑓𝑇 + 𝑁1 = 0 

𝜕𝑀𝐵2

𝜕𝑠
+

𝑎

2
𝑓𝑇 + 𝑁2 = 0 

(6.3) 

We define the net tangential force in the element  𝑇 = 𝑇1 + 𝑇2 , the net normal force  𝑁 = 𝑁1 +

𝑁2, and the total moment due to elastic bending  𝑀𝐵 = 𝑀𝐵1 + 𝑀𝐵2. The mean angle  𝜓 = (𝜓1 +

𝜓2)/2  defines the shape of the flagellum. Equations (6.1) - (6.3) can be combined with the 

constitutive equations for velocity and viscous force from resistive force theory (Chapter 4, 

(4.13) - (4.16)) to produce overall equations of motion of the two filament system. Neglecting 

the small differences in curvature between the doublets (
𝜕(𝜓1−𝜓2)

𝜕𝑠
≪  

𝜕𝜓

𝜕𝑠
), the equilibrium 

equations reduce to those defined in Chapter 4 for a 2-D beam in viscous fluid (Equations (4.31) 

and (4.32)) [77], [78]. We again consider the entire flagellum as a cantilever beam with fixed-

free boundaries. 

6.3.2 Inter-Doublet Separation and Transverse Force 

The inter-doublet shear force 𝑓𝑇(𝑠, 𝑡) includes dynein activity as well as passive shear resistance, 

and may be related to mechanical variables such as curvature, inter-doublet sliding velocity, or 
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microtubule displacement. In the GC hypothesis dynein is regulated by the transverse distance 

between doublets [80], [82], [83]. Here, we derive continuum mechanical equations that govern 

inter-doublet separation, allowing each individual filament to bend, resulting in a slight 

difference between 𝜓1, 𝜓2, and 𝜓. Subtracting Equation (6.1)2 from (6.1)1, and likewise for 

Equations (6.2) and (6.3) we obtain 

 𝜕(𝑇1 − 𝑇2)

𝜕𝑠
− (𝑁1

𝜕𝜓1

𝜕𝑠
− 𝑁2

𝜕𝜓2

𝜕𝑠
) + 2𝑓𝑇 + (𝑞𝑇1 − 𝑞𝑇2) = 0 

(6.4) 

 𝜕(𝑁1 − 𝑁2)

𝜕𝑠
+ (𝑇1

𝜕𝜓1

𝜕𝑠
− 𝑇2

𝜕𝜓2

𝜕𝑠
) − 2𝑓𝑁 + (𝑞𝑁1 − 𝑞𝑁2) = 0 

(6.5) 

 𝜕(𝑀𝐵1 − 𝑀𝐵2)

𝜕𝑠
+ (𝑁1 − 𝑁2) = 0 

(6.6) 

Denoting the change in separation between the doublets as ℎ, applied evenly between the two 

doublets, the inter-doublet distance is  𝑎 − ℎ (Figure 6.3). The tangent angle of individual 

filaments is related to the overall tangent angle by: 

𝜓1 = 𝜓 −
1

2

𝜕ℎ

𝜕𝑠
 𝜓2 = 𝜓 +

1

2

𝜕ℎ

𝜕𝑠
 𝜓1 − 𝜓2 =

−𝜕ℎ

𝜕𝑠
 

(6.7) 

 

 
Figure 6.3 – Schematic diagrams of inter-doublet separation. 

(a) Doublet spacing with zero mean curvature. Inter-doublet spacing is a smooth function of 

axial position, 𝑠, modulated by doublet flexural modulus and active and passive axoneme 

components. Shapes and sizes are exaggerated for illustration. (b) Effect of curvature and 

doublet tension (small arrows at ends of doublets) on inter-doublet force; blue arrows illustrate 

resultants. Individual doublet angle 𝜓𝑖may vary slightly from overall angle 𝜓. 
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We note that  ℎ ≪ 𝑎 ≪ 𝐿 and 
𝜕ℎ

𝜕𝑠
≪ 𝜓. We assume the distributed viscous forces act 

approximately equally on both doublets (𝑞𝑇1 − 𝑞𝑇2) ≈ (𝑞𝑁1 − 𝑞𝑁2) ≈ 0, and that the 

constitutive relationship for each doublet is 

 
𝑀𝐵1 = 𝐸𝐼𝑑

𝜕𝜓1

𝜕𝑠
 𝑀𝐵2 = 𝐸𝐼𝑑

𝜕𝜓2

𝜕𝑠
 

(6.8) 

 

where 𝐸𝐼𝑑 is the flexural modulus of an individual doublet. Eliminating terms and substituting 

the identities of (6.7), Equations (6.4) and (6.5) become: 

 𝜕(𝑇1 − 𝑇2)

𝜕𝑠
+

𝜕𝜓

𝜕𝑠
(𝑁2 − 𝑁1) +

1

2

𝜕2ℎ

𝜕𝑠2
(𝑁2 + 𝑁1) + 2𝑓𝑇 = 0 

(6.9) 

 𝜕(𝑁1 − 𝑁2)

𝜕𝑠
+

𝜕𝜓

𝜕𝑠
(𝑇1 − 𝑇2) −

1

2

𝜕2ℎ

𝜕𝑠2
(𝑇1 − 𝑇2) − 2𝑓𝑁 = 0 

(6.10) 

Substituting the spatial derivative of (6.6), definitions for 𝑁 and 𝑇, and defining  𝑆 = 𝑇1 − 𝑇2: 

 𝜕𝑆

𝜕𝑠
−

𝜕𝜓

𝜕𝑠
(𝐸𝐼𝑑

𝜕3ℎ

𝜕𝑠3
) +

1

2

𝜕2ℎ

𝜕𝑠2
(𝑁) + 2𝑓𝑇 = 0 

(6.11) 

 
𝐸𝐼𝑑

𝜕4ℎ

𝜕𝑠4
+

𝜕𝜓

𝜕𝑠
(𝑆) −

1

2

𝜕2ℎ

𝜕𝑠2
(𝑆) − 2𝑓𝑁 = 0 

(6.12) 

Ignoring small nonlinear terms (their inclusion in the full model is straightforward and does not 

perceptibly affect results), Equations (6.11) and (6.12) reduce to: 

 
𝑆 = 2∫ 𝑓𝑇𝑑𝜁

𝐿

𝑠

 
(6.13) 

 
𝐸𝐼𝑑

𝜕4ℎ

𝜕𝑠4
= 2𝑓𝑁 − 𝑆

𝜕𝜓

𝜕𝑠
 

(6.14) 

Equations (6.13) and (6.14) are key equations define the inter-doublet separation ℎ in terms of 

the transverse internal force (𝑓𝑁) and the curvature of the flagellum (
𝜕𝜓

𝜕𝑠
), which is modulated by 
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the difference in inter-doublet tensions (𝑆). To solve Equation (6.14) we again consider a fixed-

free system, but in terms of inter-doublet separation ℎ: 

(i) Zero deflection at base: ℎ(0, 𝑡) = 0  

(6.15) 

(ii) Zero angle of deflection at base: 𝜕ℎ

𝜕𝑠
(0, 𝑡) = 0  

(iii) Zero bending moment at distal end: 𝜕2ℎ

𝜕𝑠2
(𝐿, 𝑡) = 0  

(iv) Zero transverse force at distal end: 𝜕3ℎ

𝜕𝑠3
(𝐿, 𝑡) = 0  

6.3.3 Cross-Bridge Attachment and Dynein Activity 

Inter-doublet forces 𝑓𝑇 and 𝑓𝑁 are summary terms that include all active and passive 

contributions to shear. We separate the active and passive forces based on estimates of dynein 

activity and slender beam mechanics. The active force is modeled by a constant maximum active 

force (𝑓𝑇̅ or 𝑓𝑁̅) multiplied by the aggregate probability of dynein cross-bridge attachment, 𝑝. 

Passive shear and transverse forces oppose the active forces, and are assumed to be proportional 

to the corresponding components of displacement (Δ) and sliding velocity (
𝜕Δ

𝜕𝑡
) (with 

proportionality constants 𝑘𝑇 , 𝑏𝑇 in the tangential direction and 𝑘𝑁, 𝑏𝑁 in the normal direction). 

The inter-doublet sliding displacement Δ(𝑠, 𝑡) = 𝑎𝜓(𝑠, 𝑡) when the base is fixed ( 𝜓(0, 𝑡) = 0 

and Δ(0, 𝑡) = 0) [75], [78]. The tangential and normal inter-doublet forces can be defined: 

 
𝑓𝑇 = 𝑓𝑇̅𝑝 − 𝑘𝑇𝑎𝜓 − 𝑏𝑇𝑎

𝜕𝜓

𝜕𝑡
 

(6.16) 

 
𝑓𝑁 = 𝑓𝑁̅𝑝 − 𝑘𝑁ℎ − 𝑏𝑁

𝜕ℎ

𝜕𝑡
 

(6.17) 

The probability of dynein attachment p determines the overall active force generated within the 

beam, governed in the GC model by inter-doublet separation ℎ [79], [80], [82]. We assume the 

variable 𝑝 increases with a specified rate constant toward a maximum probability value 𝑝1 when 



www.manaraa.com

87 

ℎ exceeds a threshold, ℎ𝑜𝑛, and decreases to a baseline probability value (𝑝0) when ℎ is less than 

a different threshold, ℎ𝑜𝑓𝑓. This behavior is captured by the following equations and illustrated 

in Figure 6.4. The variable 𝐴 represents “activation” of dynein and modulates the probability of 

attachment. Recall h is defined as positive when doublets are close together. Deflections are 

defined relative to  ℎ𝑚𝑎𝑥 = 𝑝1𝑓𝑁̅/𝑘𝑁: 

 𝑝 = 𝑝0 + 𝐴(𝑝1 − 𝑝0) (6.18) 

 𝜕𝐴

𝜕𝑡
= 𝐾𝑜𝑛(1 − 𝐴) − 𝐾𝑜𝑓𝑓𝐴 

(6.19) 

 
𝐾𝑜𝑓𝑓(ℎ) =

𝐾0

1 + exp(20(ℎ − ℎ𝑜𝑓𝑓) /ℎ𝑚𝑎𝑥)
 

(6.20) 

 
𝐾𝑜𝑛(ℎ) =

𝐾0

1 + exp(20(ℎ𝑜𝑛 − ℎ) /ℎ𝑚𝑎𝑥)
 

(6.21) 

 

 

Figure 6.4 – Effect of inter-doublet separation on the rate of cross-bridge attachment or 

detachment 

When the doublets become sufficiently close (ℎ > ℎ𝑜𝑛) attachment probability increases at a 

characteristic rate, 𝑘0. When ℎ drops below a different threshold (ℎ < ℎ𝑜𝑓𝑓) the probability of 

attachment decreases at rate that approaches 𝑘0. Governed by Equations (6.20) - (6.21). 
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Incorporation of the effects of inter-doublet separation on dynein activity completes the basic 

model of flagella motion. Summarizing the continuum version of GC model, the coupled 

equations for  𝜓, 𝑁, 𝑇, ℎ, 𝐴, and 𝑆 are written together in Table 6.4.  



www.manaraa.com

89 

Table 6.4 – Summary of equations of flagella motion and inter-doublet separation 

Nonlinear Equations of Motion 

Tangential force balance (4.29) 
𝑇,𝑠𝑠 − 𝑁𝜓,𝑠𝑠 − (1 +

𝑐𝑇

𝑐𝑁

)𝑁,𝑠𝜓,𝑠 − 
𝑐𝑇

𝑐𝑁
𝑇𝜓,𝑠

2  = 0 

Normal force balance (4.23) 
𝑁,𝑠𝑠 + (1 +

𝑐𝑁

𝑐𝑇

)𝑇,𝑠𝜓,𝑠 + 𝑇𝜓,𝑠𝑠 −
𝑐𝑁

𝑐𝑇
 𝑁𝜓,𝑠

2  = 𝑐𝑁𝜓,𝑡 

Moment balance (4.24), sign of shear 

force 𝑓𝑇 switched to match GC 

equations and references) 

𝐸𝐼𝜓,𝑠𝑠 + 𝑎𝑓𝑇 + 𝑁 = 0 

Inter-Doublet Forces 
Inter-doublet separation (6.14) 

𝐸𝐼𝑑
𝜕4ℎ

𝜕𝑠4
= 2𝑓𝑁 − 𝑆

𝜕𝜓

𝜕𝑠
 

Tension difference in doublets (6.13) 
𝑆 = 2∫ 𝑓𝑇𝑑𝜁

𝐿

𝑠

 

Tangential inter-doublet force density 

(6.16) 𝑓𝑇 = 𝑓𝑇̅𝑝 − 𝑘𝑇𝑎𝜓 − 𝑏𝑇𝑎
𝜕𝜓

𝜕𝑡
 

Normal inter-doublet force density 

(6.17) 𝑓𝑁 = 𝑓𝑁̅𝑝 − 𝑘𝑁ℎ − 𝑏𝑁

𝜕ℎ

𝜕𝑡
 

Dynein Activity 
Cross-bridge attachment probability 

(6.18) 
𝑝 = 𝑝0 + 𝐴(𝑝1 − 𝑝0) 

Cross-bridge attachment dynamics 

(6.19) 

𝜕𝐴

𝜕𝑡
= 𝐾𝑜𝑛(1 − 𝐴) − 𝐾𝑜𝑓𝑓𝐴 

Detachment rate (6.20) 
𝐾𝑜𝑓𝑓(ℎ) =

𝐾0

1 + exp(20(ℎ − ℎ𝑜𝑓𝑓) /ℎ𝑚𝑎𝑥)
 

Attachment rate (6.21) 
𝐾𝑜𝑛(ℎ) =

𝐾0

1 + exp(20(ℎ𝑜𝑛 − ℎ) /ℎ𝑚𝑎𝑥)
 

 

6.4 Opposing Doublet Pairs 
The equations summarized in Table 6.4 describe the mechanics by which dynein activity might 

lead to global flagella bending and inter-doublet separation in a flagellum with a single pair of 
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doublets. However, as written above these equations will only produce active bending in one 

direction, and will not lead to oscillations. To explain this switching behavior, we invoke the 

widely accepted notion that two subsystems exist (Figure 6.1), each consisting of a set of 

doublets and associated dynein motors [80], [82] and governed by a set of equations like those in 

Table 6.4. The principal (𝑃) bend subsystem comprises doublets 2-4 and the reverse (𝑅) 

subsystem comprises doublets 7-9 (Figure 6.1). The resulting equations for the two sides are 

tabulated in Table 6.5. 

The equations for the 𝑅 side are identical to those of the 𝑃 side, after replacing 𝑃 with 𝑅, except 

that the active force ( −𝑓𝑇̅𝑝𝑅) is negative as it bends the flagella in the opposite direction. The 

equations of global flagella motion (Equations (4.23), (4.24), (4.29), and Table 6.4) remain the 

same except that activity on both the 𝑃 and 𝑅 sides contributes to the total active bending 

moment: 𝑎𝑓𝑇 = 𝑎(𝑓𝑇𝑃 + 𝑓𝑇𝑅). To model asymmetric beating, values of parameters (such as ℎ𝑜𝑛 

or ℎ𝑜𝑓𝑓) may differ between sides 𝑃 and 𝑅. 
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Table 6.5 – Equations for principal (P) and reverse (R) doublet pairs 

 Principal (P) Reverse (R) 

Inter-

doublet 

separation 

𝐸𝐼𝑑
𝜕4ℎ𝑃

𝜕𝑠4
= 2𝑓𝑁𝑃 − 𝑆𝑃

𝜕𝜓

𝜕𝑠
 𝐸𝐼𝑑

𝜕4ℎ𝑅

𝜕𝑠4
= 2𝑓𝑁𝑅 − 𝑆𝑅

𝜕𝜓

𝜕𝑠
 

Tension 

difference  𝑆𝑃 = 2∫ 𝑓𝑇𝑃𝑑𝜁
𝐿

𝑠

 𝑆𝑅 = 2∫ 𝑓𝑇𝑅𝑑𝜁
𝐿

𝑠

 

Tangential 

force 

density 

𝑓𝑇𝑃 = 𝑓𝑇̅𝑝𝑃 − 𝑘𝑇𝑎𝜓 − 𝑏𝑇𝑎
𝜕𝜓

𝜕𝑡
 𝑓𝑇𝑅 = −𝑓𝑇̅𝑝𝑅 − 𝑘𝑇𝑎𝜓 − 𝑏𝑇𝑎

𝜕𝜓

𝜕𝑡
 

Normal 

force 

density 

𝑓𝑁𝑃 = 𝑓𝑁̅𝑝𝑃 − 𝑘𝑁ℎ𝑃 − 𝑏𝑁

𝜕ℎ𝑃

𝜕𝑡
 𝑓𝑁𝑅 = 𝑓𝑁̅𝑝𝑅 − 𝑘𝑁ℎ𝑅 − 𝑏𝑁

𝜕ℎ𝑅

𝜕𝑡
 

Attachment 

probability 
𝑝𝑃 = 𝑝0 + 𝐴𝑃(𝑝1 − 𝑝0) 𝑝𝑅 = 𝑝0 + 𝐴𝑅(𝑝1 − 𝑝0) 

Attachment 

dynamics 

𝜕𝐴𝑃

𝜕𝑡
= 𝐾𝑜𝑛(1 − 𝐴𝑃) − 𝐾𝑜𝑓𝑓𝐴𝑃 

𝜕𝐴𝑅

𝜕𝑡
= 𝐾𝑜𝑛(1 − 𝐴𝑅) − 𝐾𝑜𝑓𝑓𝐴𝑅 

Attachment 

rate 
𝐾𝑜𝑓𝑓(ℎ𝑃) =

𝐾0

1 + exp(20(ℎ𝑃 − ℎ𝑜𝑓𝑓) /ℎ𝑚𝑎𝑥)
 𝐾𝑜𝑓𝑓(ℎ𝑅) =

𝐾0

1 + exp(20(ℎ𝑅 − ℎ𝑜𝑓𝑓) /ℎ𝑚𝑎𝑥)
 

Detachment 

rate 
𝐾𝑜𝑛(ℎ𝑃) =

𝐾0

1 + exp(20(ℎ𝑜𝑛 − ℎ𝑃) /ℎ𝑚𝑎𝑥)
 𝐾𝑜𝑛(ℎ𝑅) =

𝐾0

1 + exp(20(ℎ𝑜𝑛 − ℎ𝑅) /ℎ𝑚𝑎𝑥)
 

 

6.4.1 Inter-Doublet Equations: Two Doublet Model 

In the GC model, the net shear force is 𝑓𝑇 = 𝑓𝑇𝑃 + 𝑓𝑇𝑅, where 𝑓𝑇𝑃 and 𝑓𝑇𝑅 are the net shear 

forces in the principal and reverse directions, exerted between pairs of doublets on opposite sides 

of the axoneme. Including shear forces due to passive stiffness and friction, net shear force may 

be expressed as [84]: 

 
𝑓𝑇 = 𝑓𝑇𝑃 + 𝑓𝑇𝑅 = 𝑓𝑇̅𝑝𝑃 − 𝑘𝑇𝑎𝜓 − 𝑏𝑇𝑎

𝜕𝜓

𝜕𝑡
− 𝑓𝑇̅𝑝𝑅 − 𝑘𝑇𝑎𝜓 − 𝑏𝑇𝑎

𝜕𝜓

𝜕𝑡
 

(6.22) 

 
𝑓𝑇 = 𝑓𝑇̅(𝐴𝑃 − 𝐴𝑅)(𝑝1 − 𝑝0) − 2𝑘𝑇𝑎𝜓 − 2𝑏𝑇𝑎

𝜕𝜓

𝜕𝑡
 

(6.23) 
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Changing the sign of the active shear force 𝑓𝑇 to match that of [75] and [77] (which is opposite 

that of [84]) and defining the net dynein activity in the principal bend direction 𝐴 = 𝐴𝑃 − 𝐴𝑅 the 

inter-doublet shear force may be written: 

 
𝑓𝑇 = 𝑓𝑇̅(𝑝1 − 𝑝0)𝐴 + 2𝑘𝑇𝑎𝜓 + 2𝑏𝑇𝑎

𝜕𝜓

𝜕𝑡
 

(6.24) 

Internal normal forces are not assumed to be additive in the same manner as tangential forces due 

to the geometry of the flagellum, thus the general expression for 𝑓𝑁 (6.17) may be combined with 

the equation for inter-doublet separation (6.14): 

 
𝐸𝐼𝑑

𝜕4ℎ

𝜕𝑠4
+ 2𝑘𝑁ℎ + 2𝑏𝑁

𝜕ℎ

𝜕𝑡
= 2𝑓𝑁̅[𝑝0 + (𝑝1 − 𝑝0)𝐴] − 𝑆

𝜕𝜓

𝜕𝑠
 

(6.25) 

 

6.4.2 Load Dynamics of Inter-Doublet Separation 

The activation variable 𝐴 is governed by Equation (6.19). The local dynamics of Equations 

(6.25) and (6.19) may be examined by ignoring spatial variations in ℎ and 𝐴 and uncoupling the 

resulting equations from the global flagellar motion (letting 𝑆
𝜕𝜓

𝜕𝑠
= 0). This leads to a pair of 

ordinary differential equations (ODEs): 

 𝑑ℎ

𝑑𝑡
=

𝑓𝑁̅(𝑝1 − 𝑝0)

𝑏𝑁
𝐴 −

𝑘𝑁

𝑏𝑁
ℎ +

𝑓𝑁̅

𝑏𝑁
𝑝0 

(6.26) 

 𝑑𝐴

𝑑𝑡
= 𝐾𝑜𝑛(1 − 𝐴) − 𝐾𝑜𝑓𝑓𝐴 

(6.27) 

 

The nullclines of this system (where 
𝑑ℎ

𝑑𝑡
= 0 or  

𝑑𝐴

𝑑𝑡
= 0) are shown in Figure 6.5(a). For 

illustrative purposes we consider the case 𝑝0 = 0; other parameters are as in Table 6.6. The 

intersections of the nullclines define the equilibria (fixed points) of the local system. 
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Figure 6.5 – Dynamics of inter-doublet separation variables A and h. 

(a) Nullclines and vector field corresponding to the local dynamics of inter-doublet separation: 

Equations (6.26) and (6.27). (b) Trajectories in the 𝐴 − ℎ plane rapidly approach a curve 

representing the quasi-equilibrium value of 𝐴 for a given value of ℎ: 𝐴𝑒𝑞(ℎ). (c) The system 

approaches the behavior of a particle on a curved surface with two stable equilibria separated by 

an unstable equilibrium. 

 

Table 6.6 – Parameter values of the continuum GC model 

[84] (𝐿, 𝐸𝐼, 𝑎, 𝑐𝑁  are as in Table 5.1) 

Parameter Value Units Description 

𝜏 0.05 s Dynein time constant 

𝑝0 0.05 1 Baseline probability of crosslinking 

𝑝1 0.15 1 Maximum probability of crosslinking 

𝑓𝑇 2000 pN/μm Maximum dynein force per unit length 

𝑘𝑇 12.5 pN/μm
2
 Passive shear stiffness 

𝑏𝑇 0.25 pN-s/μm
2
 Passive shear friction 

𝑘𝑁 500 pN/μm
2
 Passive normal stiffness 

𝑏𝑁 10 pN-s/μm
2
 Passive normal friction 

𝐶𝑆 0.50 μm/ pN-s Interdoublet force and dynein coupling factor 

𝑘3 30 pN/μm
4
 Nonlinear shear stiffness 

 

At the parameter values listed in Table 6.6, the behavior of the local 2D system is closely 

approximated by a 1D sub-system, as the cross-bridge variable (𝐴) approaches a quasi-

equilibrium for each value of inter-doublet spacing (ℎ). Trajectories from many initial conditions 

are shown in Figure 6.5(b); trajectories rapidly approach a curve that comprises the unstable 

manifold of the unstable fixed point and the stable manifolds of the two locally stable fixed 

points. Trajectories then more slowly approach one of the stable fixed points. The asymptotic 

behavior resembles that of a damped particle on the energy surface of Figure 6.5(c). 
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After the initial transient, the inter-doublet separation is well described by the simplified model: 

 𝑑ℎ

𝑑𝑡
≈

𝑓𝑁̅(𝑝1 − 𝑝0)

𝑏𝑁
𝐴𝑒𝑞(ℎ) −

𝑘𝑁

𝑏𝑁
ℎ 

(6.28) 

Examining the plots of 𝑑ℎ/𝑑𝑡 vs ℎ and 𝑑𝐴/𝑑𝑡 vs 𝐴 (Figure 6.6) in this local system, it is 

apparent that the right hand side of Equation (6.28) may be approximated by a cubic polynomial 

function, as in many excitable systems (Fitzhugh-Nagumo, e.g.). Thus, local dynamics of ℎ 

follow: 

 𝑑ℎ

𝑑𝑡
≈ 𝐶ℎℎ(ℎ − ℎ𝑡ℎ)(ℎ𝑚𝑎𝑥 − ℎ) 

(6.29) 

where ℎ𝑚𝑎𝑥 = 𝑓𝑁̅(𝑝1 − 𝑝0)/𝑘𝑁. The other parameters of the cubic analogy, 𝐶ℎ and ℎ𝑡ℎ, depend 

on 𝑘𝑁, 𝑏𝑁, ℎ𝑜𝑛 , and ℎ𝑜𝑓𝑓. Similarly, the local dynamics of the attachment variable 𝐴 may be 

approximated by (Figure 6.6(c)): 

 𝑑𝐴

𝑑𝑡
≈ 𝐸(𝐴) =  𝐶𝐴𝐴(𝐴 − 𝐴𝑡ℎ)(1 − 𝐴) 

(6.30) 

If we make the corresponding approximation in the equation of inter-doublet separation (6.25) 

we obtain: 

 𝜕ℎ

𝜕𝑡
= −

𝐸𝐼𝑑
2𝑏𝑁

𝜕4ℎ

𝜕𝑠4
+ 𝐶ℎℎ(ℎ − ℎ𝑡ℎ)(ℎ𝑚𝑎𝑥 − ℎ) −

𝑆

2𝑏𝑁

𝜕𝜓

𝜕𝑠
 

(6.31) 
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Figure 6.6 – Analogous equations for A and h 

Trajectories in (a) the 𝑑ℎ/𝑑𝑡 – ℎ plane and (b) the 𝑑𝐴/𝑑𝑡 − 𝐴 plane rapidly approach 1-D curves 

as in Figure 6.5. These curves resemble cubic polynomial functions with three zeros representing 

two stable equilibria and one unstable (threshold) equilibrium. (c) The cubic polynomial analogy 

to local attachment dynamics: 
𝜕𝐴

𝜕𝑡
≈ 𝐸(𝐴) = 𝐶𝐴𝐴(𝐴 − 𝐴𝑡ℎ)(1 − 𝐴) . Derivatives are normalized 

by 𝜏𝑁 = 𝑏𝑁/𝑘𝑁. 
 

Excluding the last term, Equation (6.31) is a form of the parabolic nonlinear 4
th

 order PDE with 

bi-stable nonlinearity known as the extended Fisher-Kolmorogov (EFK) equation [108]. The 

term 𝑆
𝜕𝜓

𝜕𝑠
 couples this system to global flagella motion. This equation (with 𝑆

𝜕𝜓

𝜕𝑠
= 0) is 

analogous to the classic reaction-diffusion system, and is known to exhibit traveling wave front 

solutions [106]. Figure 6.7 shows examples of propagation of an initial disturbance in ℎ at the 

left end of the domain, using (a) the original model with cross-bridge kinetics (Equations (6.25) 

and (6.19)) and (b) the cubic approximation, Equation (6.31), showing the cubic approximation 

exhibits very similar propagation to the original PDE [84]. 
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Figure 6.7 – Propagation of inter-doublet separation 

(a) The decrease in separation ℎ(𝑠, 𝑡) is computed from the original PDE of inter-doublet 

separation (Equations (6.25) and (6.19)), and plotted vs 𝑠/𝐿 at discrete times 𝑡 = 0.025 𝑛, n=1, 

2, ..20. (b) Solutions of the simplified excitable system (Equation (6.31)) plotted vs. 𝑠/𝐿 at the 

same discrete times. Note the domain is extended to 𝑠 = 2𝐿 to better visualize propagation. 

 

Thus the equations of inter-doublet separation and dynein activity, uncoupled from the global 

motion of the flagellum, clearly support propagation of disturbances. Results from theoretical 

studies of the EFK equation [39], [105], [106], [108]–[110] can illuminate the relationship 

between flagella properties and behavior. 

6.5 Stability Analysis  
To produce flagellar motion, dynein activity not only propagates, but also changes flagellar 

curvature and periodically and autonomously switches the direction of bending. This behavior is 

exhibited by the discrete GC model [79], [80], [82] and is replicated by the current set of PDEs. 

We will first consider small-amplitude (linear) motion. Chlamydomonas flagella exhibit small-

amplitude, symmetric oscillations which propel the cells backward under conditions of increased 

cytosolic calcium concentration [36], [111], [112]. 

6.5.1 Linearized Equations of Motion 

As described in Chapter 5, for small-amplitude motion about a straight equilibrium conformation 

Equations (4.31) - (4.32) can be reduced by eliminating nonlinear terms, leading to a single 

equation [75], [77], [113]: 
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 𝐸𝐼𝜓,𝑠𝑠𝑠𝑠 + 𝑎𝑓𝑇,𝑠𝑠
+ 𝑐𝑁𝜓,𝑡 = 0 (6.32) 

In the GC model, dynein activity on both the principal and recovery bends is encompassed in the 

shear force term 𝑓𝑇. All equations necessary to describe 𝑓𝑇 are given in Table 6.6 and examined 

in Equation (6.23). Considering previous analysis of local dynamics (Figure 6.5, Figure 6.6) 

dynein activity on each side of the beam is governed by an equation like: 

 𝜕𝐴𝑃

𝜕𝑡
≈

𝜕ℎ𝑃

𝜕𝑡
∙
𝑑𝐴𝑒𝑞

𝑑ℎ
 

(6.33) 

Dynein activity is thus governed by the propagation dynamics of Equation (6.31) coupled to 

global flagella motion by tension and curvature ( 𝑆𝑃
𝜕𝜓

𝜕𝑠
 or 𝑆𝑅

𝜕𝜓

𝜕𝑠
 ). After adding the two sides 

together and linearizing, only the baseline difference in tension, 𝑆0, appears in the equation 

governing net dynein activity, 𝐴. The following expressions are obtained [84]: 

 𝜕𝐴

𝜕𝑡
= −(

1

𝜏𝑁

)𝐴 − 𝐶𝑆𝑆0

𝜕𝜓

𝜕𝑠
+

𝐸𝐼𝑑
2𝑏𝑁

𝜕4𝐴

𝜕𝑠4
 

(6.34) 

 
𝑆0 = 2∫ 𝑓̅

𝐿

𝑠

𝑝0 𝑑𝜁 = −2𝑓𝑝̅0(𝐿 − 𝑠) 
(6.35) 

The time constant 𝜏𝑁 = 𝑏𝑁/𝑘𝑁 describes the local (linearized) behavior of 𝐴; the new variable 

𝑆0 is the baseline difference in tension in the doublets. This resting difference in tension provides 

a baseline level of coupling between curvature and dynein activity even when the flagellum is 

almost straight. The parameter 𝐶𝑆 = (
𝑑𝐴𝑒𝑞

𝑑ℎ
)/2𝑏𝑁 controls the magnitude of the coupling [84]. 

The stability of a straight flagellum is significantly affected when 𝑆0 ≠ 0. 

6.5.2 Eigenvalue Problem for the GC Model 

Similar to Chapter 5, we assume the flagellar waveform is separable and seek generalized 

solutions of the form [75]–[77]: 
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𝜓(𝑠, 𝑡) = 𝜓̃(𝑠) exp(𝜎𝑡) 𝑓𝑇(𝑠, 𝑡) = 𝑓𝑇(𝑠) exp(𝜎𝑡) 𝐴(𝑠, 𝑡) = 𝐴̃(𝑠) exp(𝜎𝑡) (6.36) 

 

We again use the exponential term  𝜎 = 𝛼 + 𝑖𝜔 where 𝛼 and 𝜔 are real to allow all possible 

(stable and unstable) solutions. Each such solution 𝜓̃ that satisfies the equation of motion and all 

boundary conditions is a solution mode. If 𝛼 > 0, the mode grows exponentially. If 𝑚 such 

modes are found with exponents 𝜎𝑚 and shape  𝜓̃(𝑚)(𝑠), then a solution can also be formed from 

any linear combination of these modes:  𝜓(𝑠, 𝑡) = ∑ 𝑎𝑚𝑒𝜎𝑚𝑡𝑀
𝑚=1 𝜓̃(𝑚)(𝑠). In general, for 

arbitrary initial conditions, the least stable mode will dominate the response. 

To illuminate the mechanisms of mechanical feedback from flagellar shape and facilitate 

comparison to other models, we neglect for the moment the relatively small 4
th

 order spatial 

derivative term in Equation (6.34). The resulting expressions can be combined and simplified to 

obtain an ordinary differential equation (ODE) in 𝜓̃: 

 
𝐸𝐼

𝑑4𝜓̃

𝑑𝑠4
− 𝑐1(𝜎)

𝑑2

𝑑𝑠2
[(1 − 𝑠/𝐿)

𝑑𝜓̃

𝑑𝑠
] − 𝑐2(𝜎)

𝑑2𝜓̃

𝑑𝑠2
+ 𝜎𝑐𝑁𝜓̃ = 0 

(6.37) 

with coefficients: 

 𝑐1(𝜎) = 2𝑝0(𝑝1 − 𝑝0)𝑎𝑓𝑇̅
2𝐶𝑆𝜏𝑁𝐿/(𝜏𝑁𝜎 + 1) (6.38) 

 𝑐2(𝜎) = 2𝑎2(𝑘𝑇 + 𝜎𝑏𝑇) (6.39) 

In non-dimensional form the equation becomes 

 𝜓̃′′′′ − [𝑐1̅(𝜎̅)(1 − 𝑠̅)𝜓̃′]′′ − 𝑐2̅(𝜎̅)𝜓̃′′ + 𝜎𝜓̃ = 0 (6.40) 

or its equivalent,  

 𝜓̃′′′′ − 𝑐1̅(𝜎̅)(1 − 𝑠̅)𝜓̃′′′ − [𝑐2̅(𝜎̅) − 2𝑐1̅(𝜎̅)]𝜓̃′′ + 𝜎𝜓̃ = 0 (6.41) 

where the new non-dimensional parameters are 𝑐1̅ = 𝑐1𝐿
2/𝐸𝐼 and 𝑐2̅ = 𝑐2𝐿

2/𝐸𝐼. 
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It is apparent that the GC model includes feedback from both curvature (the term containing 

𝜓̃′′′) and shear deformation (the term containing 𝜓̃′′ ). Notably, both terms become more 

destabilizing when  𝑐1(𝜎) increases [84]. An important feature of the curvature-feedback term in 

the GC model is the proportionality to 1 − 𝑠̅. The feedback is thus strongest at the proximal end, 

which encourages switching at the base and proximal-to-distal bend propagation. The factor of  

1 − 𝑠̅ also complicates the solution of the eigenvalue problem, so that numerical methods (finite 

element calculations or weighted residuals, e.g.) are required to find the natural modes and 

frequencies of oscillation. 

6.5.3 Numerical Eigenanalysis and Simulation 

The method of weighted residuals is well-suited to this problem, as the flagella eigenfunctions 

can be constructed from the vibration modes of an Euler-Bernoulli beam with corresponding 

boundary conditions. Stability analysis of the linearized equations of motion (Equation (6.41) 

and fixed-free boundary conditions) was performed by using the method of weighted residuals 

[105] with up to 𝑁 = 12 test functions to obtain a matrix form of the eigenvalue problem. The 

resulting matrix eigenvalue problem was solved using MATLAB software (The Mathworks, 

Natick, MA).  The free vibration modes of a uniform, fixed-free beam were used as trial and test 

functions. 

To check the stability of the solution and characterize subsequent behavior, solutions to the 

equations of motion were also found using COMSOL. The 1-D domain was discretized into 50 

elements with quartic interpolation. Eigenvalue/eigenfunction calculations (300 maximum 

iterations, relative tolerance 1x10
-6

) and time-marching simulations (backward differentiation 

formula, variable time step, relative tolerance 1x10
-4

) were performed. Representative results 

were confirmed at finer spatial resolution and smaller tolerance values. 
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6.5.4 Unstable Modes of the GC Model 

By analogy to other models, parameter changes that increase the magnitude of the delayed 

curvature feedback and decrease the value of the shear feedback were expected to lead to 

instability. Increasing the baseline probability of cross-bridge attachment, 𝑝0, does both. A 

dynamic instability occurs when complex eigenvalues cross into the right half plane (Figure 6.8) 

with non-zero imaginary part: 𝑅𝑒(𝜎) > 0; 𝐼𝑚(𝜎) ≠ 0. Increasing the baseline probability of 

cross-bridge attachment, 𝑝0, encourages instability. 

Physically, the oscillations shown in Figure 6.9 can be interpreted as the result of a switching 

mechanism [79], [114]. Active shear in one doublet pair (for example the P side) induces a 

tension difference in the doublets on that side which, combined with curvature, produces a 

transverse force (𝑆𝑃
𝜕𝜓

𝜕𝑠
) which pushes the doublets apart and eventually terminates the active 

shear. This transverse force corresponds to the “global transverse force” described by Lindemann 

[79], [80], [82]. At the same time, the corresponding passive shear force on the opposite doublet 

pair produces a transverse force (𝑆𝑅
𝜕𝜓

𝜕𝑠
) which pulls the doublets on the passive side together and 

initiates active shear on that side. The modes corresponding to the 3 least stable eigenvalues are 

shown in Figure 6.9. 
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Figure 6.8 – Eigenvalues of the GC model from the weighted residual method 

(a) Paths of eigenvalues  𝜎 = 𝛼 + 𝑖𝜔 in the complex plane as 𝑝0 is varied (0 < 𝑝0 < 0.2) in the 

GC flagella model (6.31). Other parameters are as in Table 6.6. The red ‘x’ symbols denote the 

eigenvalues at the final value 𝑝0 = 0.2. (b) Frequency 𝜔/2𝜋 (Hz) of the least stable mode of the 

GC model as a function of flagella length and baseline probability of dynein activation, 𝑝0. Other 

parameters are as in Table 6.6. At each parameter combination (𝑝0, 𝐿) frequency is obtained from 

the imaginary part (𝑖𝜔) of the eigenvalue 𝜎 = 𝛼 + 𝑖𝜔 with largest real part (𝛼). (c) Median phase 

gradient, 
𝜕∠𝜓̃

𝜕𝑠
, of the least stable mode. Anterograde (proximal-distal) propagation corresponds to 

a phase gradient < 0, for 𝜔 > 0. For all parameter combinations shown, the least stable mode 

exhibits anterograde propagation.  

 

 
Figure 6.9 – Unstable modes of the GC model 

Solutions to Equation (6.31) with parameter values in Table 6.6. (Left) The mode shape 

expressed in terms of tangent angle, 𝜓̃(𝑠̅). (Right) The mode shape expressed in terms of 

displacement, 𝑦̃(𝑠̅). The real (solid line) and imaginary (dashed line) part of each mode is shown.  

Unstable modes correspond to eigenvalues 𝜎 = 𝛼 + 𝑖𝜔: (a-b)  𝛼 = 38.5/s,  𝜔/2𝜋 =43.2 Hz. (c-

d)  𝛼 = 7.75/s,  𝜔/2𝜋 =32.6 Hz. (e-f)  𝛼 = 1.20/s,  𝜔/2𝜋 =20.3 Hz. 
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6.6 Large Amplitude, Nonlinear Flagella Oscillations 
To explore large-amplitude nonlinear behavior of the model, direct numerical simulations (time-

marching) of the complete system of flagellum equations were performed in COMSOL as 

described above. Equations (4.23), (4.24), and (4.29) with fixed-free boundary conditions, 

together with the inter-doublet separation Equations (6.13) and (6.14) and dynein activity 

Equations (6.16) - (6.21), were incorporated in the model. Simulations were started from an 

initial straight configuration. Bending is initiated by asymmetry in the baseline probabilities of 

attachment [84]. 

For a wide range of parameter values the system exhibited large-amplitude oscillations (Figure 

6.10). Solutions are characterized by proximal-distal propagation of dynein activity, sustained by 

the local positive feedback between dynein activity and inter-doublet separation. As predicted by 

Lindemann [79], [80], [82], [114], when the curvature and doublet tension become large enough, 

the global transverse force  (𝑆
𝜕𝜓

𝜕𝑠
) promotes doublet separation at the proximal end of the active 

side. This leads to switching of dynein activity and reversal of the direction of bending. For 

reasonable parameter values (Table 6.6; Figure 6.10) the frequency, amplitude, and waveform 

resemble those of Chlamydomonas in forward swimming (Figure 6.10). 
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Figure 6.10 – GC waveforms of Chlamydomonas flagella from time-marching simulation 

(a) Asymmetric waveform with baseline probabilities of dynein attachment 𝑝0𝑃 = 0.05 and 

𝑝0𝑅 = 0.01. (b) Symmetric waveform with baseline probabilities of dynein attachment 𝑝0𝑃 =
𝑝0𝑅 = 0.10. Panels (c - h) show corresponding time series of tangent angle, attachment 

probability and deflection at 𝑠 = 𝐿/2. Panels (c, e, g) correspond to the waveform in panel (a). 

Panels (d, f, h) correspond to the waveform in panel (b). Parameters values are in Table 6.6 

except as noted: 𝐿=12 µm; 𝐸𝐼 = 500 pN- µm
2
; 𝑎= 0.200 µm; 𝐶𝑁=0.0025 pN-s/ µm

2
. 
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Nonlinear simulations of the GC model with parameters as in the SC model (Case 1, Figure 5.5, 

Case 2, Figure 5.9) were also performed (Figure 6.11). Again, Fourier analysis shows the relative 

contribution of the fundamental mode to simulations (Table 6.7). 

 
Figure 6.11 – Nonlinear simulation of geometric clutch model 

Nonlinear GC model simulation [84], with parameters in Table 6.6 for comparison to sliding-

controlled model; (a) Successive snapshots of the flagellar waveform from time-marching 

simulations; color shows time increasing from blue (early) to red (later); (b) Time series of angle 

at tip 𝜓(𝑠 = 𝐿)  (top) and tension at base 𝑇0(𝑠 = 0) (bottom; 𝑇0 < 0 is propulsive); (c) Plot of 

𝜓(3𝐿/4) vs 𝜓(𝐿) (clockwise loop = anterograde propagation; counter-clockwise=retrograde); 

(d) Fundamental mode shape y from Fourier analysis of simulation. 

 

Table 6.7 – Comparison of GC fundamental modes from simulation to the linearized system 

Parameters in Table 6.6 

Model Simulation: 

Fundamental 

Frequency (Hz) 

Simulation:  

Relative  

Amplitude of 

Fundamental 

Mode 

Eigenanalysis: 

Frequencies of 

Unstable Modes 

(Hz) 

Correlation 

Coefficients: 

Simulation to 

Eigenanalysis 

Geometric clutch 46.2 0.948 43.2 

32.6 

20.3 

0.971 

0.804 

0.430 

 

6.7 Discussion 
Partial differential equations (PDEs) corresponding to a continuum version of the GC hypothesis 

of flagella motion were derived and analyzed. The GC hypothesis has been supported previously 

by a discrete computer model [79], [80], [82].The solutions to the equations derived here exhibit 

characteristic features of Chlamydomonas flagella: (1) propagation of dynein activity after a 

supra-threshold stimulus; (2) instability and emergence of small-amplitude, symmetric 
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oscillations under some conditions; (3) the occurrence of large-amplitude, asymmetric 

oscillations under other conditions. 

The PDEs of the GC model were derived from a simplified but rigorous mechanical analysis of 

doublet pairs on opposite sides of the flagellum. The effects of dynein activity on inter-doublet 

separation, both directly and indirectly through the effects of accumulated tension and curvature, 

are included. In turn, dynein activity is modulated by the distance between doublets. 

This model includes both local positive feedback, as dynein activity pulls doublets together and 

increases the likelihood of attachment, and global negative feedback, in which accumulated 

tension difference and increasing curvature tend to pull the doublets apart. This negative 

feedback is greater proximally than distally, favoring proximal to distal propagation. Notably, 

when the baseline probability of attachment is symmetric and relatively large, small-amplitude 

oscillations arise via a classical dynamic instability. Higher levels of baseline dynein activity 

increase the steady-state difference in tension in the doublets, which amplifies the de-stabilizing 

effects of curvature feedback. 

Our analysis provides theoretical justification for the GC hypothesis. The equations of inter-

doublet separation reduce to a form of the extended Fisher-Kolmorogov (EFK) equations [110], 

[115], [116], an excitable system known to exhibit propagating wavefronts. This system is 

closely related to classical reaction-diffusion models [115]. Direct simulation of the original 

equations of inter-doublet separation (Equations (6.19) and (6.25)) or a simplified excitable 

model (Equation (6.31)) led to patterns of dynein activity that propagated from the location of a 

supra-threshold stimulus. Propagation speed depends on elastic and viscous properties of the 
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flagellum, parameters that describe the effects of inter-doublet spacing on cross-bridge 

formation, and external viscosity. 

The emergence of oscillations via dynamic instability is confirmed in a linearized version of the 

system of equations. The modes and frequencies predicted by this linearized analysis correspond 

to the small-amplitude solutions of the full nonlinear model under certain conditions. These 

modes resemble the symmetric motion of Chlamydomonas flagella during backward swimming 

[117]. Time-marching simulations of the full GC model with unequal parameter values 

governing dynein activity on the P and R sides lead to large-amplitude, asymmetric oscillations 

similar to those exhibited by Chlamydomonas in forward swimming [85], [86], [117] (Figure 

6.10). In the absence of active dynein forces, these equations predict the behavior of an elastic 

beam in viscous fluid and the flagellum returns asymptotically to its straight position. The GC 

model combines a physically-intuitive mechanism with predicted behavior that resembles 

observed waveforms. Based on the results of both eigenanalysis and simulation, the data 

presented in this chapter demonstrate the GC model can produce waveforms with anterograde 

bend propagation, bend switching at the base, and asymmetry similar to those observed in 

beating Chlamydomonas flagella. These results suggest axonemal dyneins are regulated mostly 

by inter-doublet separation, not local doublet sliding. 
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Chapter 7 

 

Discussion and Future Work 

 

This thesis describes experimental measurements of the Chlamydomonas reinhardtii flagellar 

waveform, as well as mathematical modeling and analysis of the flagellum. Flagellar beating has 

been partially characterized in previous papers[72], [92], [100] but comprehensive, quantitative 

experimental data has remained elusive. The experimental approach used here is based on a fast, 

partially automated method for quantifying Chlamydomonas waveforms. Solutions to 

mathematical models of the flagellum were found by both eigenvalue analysis and by time-

marching simulation. This chapter summarizes the key findings, examines their significance and 

discusses possible future work. 

7.1 Summary 
The Chlamydomonas flagellum is an excellent tool for understanding the mechanics and 

response of axonemes. We find that flagella respond to mechanical loading by primarily varying 

either beat frequency or waveform. We confirm previous studies [13], [89], [93], [118] showing 

outer dynein arms are important for maintaining beat frequency. This becomes even more 

apparent at high viscosities. We observe a reduction in beat width in axonemes lacking inner 

dynein arm I1/f, suggesting this protein is important for maintenance of a complete power stroke 

and overall spread of the flagellar beat. The analysis methods presented here suggest beat 
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frequency, beats per revolution, stroke width, curvatures, bend propagation speeds, and stroke 

completion are useful parameters for characterizing function of a flagellum. 

Modeling the flagellum as a nonlinear slender beam in viscous fluid allows derivation of 

continuum equations of beam mechanics. The solution method proposed by Riedel-Kruse [75] 

formalizes a mechanism of sliding filament control of dynein regulation, but ignores possible 

unstable modes that turn out to be important. Formulation of the geometric clutch as a continuum 

model provides a mathematical basis for an intuitive switching mechanism at the base of the 

flagellum and displays anterograde bend propagations similar to those observed in 

Chlamydomonas flagella. Analysis of these models suggests curvature and tension feedback are 

important regulators of dynein activity in the axoneme. 

7.1.1 Key Findings and Results 

 Experiment: Waveform analysis of uniflagellate Chlamydomonas cells in regular and 

high viscosity media shows that the axoneme responds differently to mechanical loading, 

depending on which motor proteins are present. 

o Outer dynein arms are important for maintaining beat frequency at all viscosities. 

o Flagella generate maximum power at low viscosities, suggesting they are tuned to 

beat optimally in regular media. Cells lacking inner dynein arm I1/f and outer 

dynein arms show very little power generation compared to wild-type flagella. 

o The fast flagellar beating rate of ida1 mutants, particularly at high viscosities, 

suggests I1/f may actually inhibit bending at high viscosities. 

o Reduction in ida1 power stroke completion and increase in oda2 recovery stroke 

completion suggests that timing of bend initiation and completion is more 
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important in determining the waveform than minimum or maximum curvature 

values (bend magnitudes). 

o Significant increase in curvature values only in wild-type axonemes at high 

viscosities suggests all dynein motors must be present in order to overcome 

additional resistance to bending. 

 Theory: Analysis and simulation of sliding controlled (SC) and geometric clutch (GC) 

models has provided useful insight into their ability to explain flagella motion 

o The analysis of the sliding-controlled mechanism of dynein regulation, as 

formulated by Riedel-Kruse, et al., does not capture all possible modes of the 

linearized equations of the beam in viscous media. The existence of retrograde, 

unstable modes found in this study weakens the argument for this model. 

o Complete nonlinear simulation of a beam with sliding-controlled dynein 

regulation confirms instability and retrograde (tip-to-base) propagation of bends. 

o A continuum model of the geometric clutch dynein control mechanism shows 

anterograde bend propagation and robust switching between bends at the base of 

the flagellum, similar to observed Chlamydomonas waveforms. 

o Inter-doublet tension and curvature may be key determinants of flagellar 

switching. 

7.1.2 Significance 

Quantitative waveform analysis methods can be used to analyze the flagellar beat and compare 

changes in flagellum structure and response to conditions. Here we show flagellar response to 

mechanical loading, including beat frequency reduction and mutation-specific parameter 

changes. Increasing waveform contrast through tracing allows more accurate and efficient fitting 
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algorithms, at the expense of input time. The automated, quantitative, analysis of previously 

qualitative information provides valuable additional insight. 

Formulation of continuum models of the flagellum as a beam allows comprehensive analysis of 

the system not possible with other discrete methods. Analysis of the sliding-controlled 

mechanism of dynein regulation shows this model is unable to describe the autonomous 

anterograde propagation of bends found in axonemes. The geometric clutch, however, is able to 

recapitulate these behaviors in a system that presents a simple mechanism for curvature and 

inter-doublet tension feedback. The analysis presented here suggests the geometric clutch is a 

more plausible model of dynein regulation, although some elements of sliding control may still 

be useful in a comprehensive model of flagellar motion. 

7.2 Limitations 

7.2.1 Cell Experiments 

All cells were assumed to be periodically beating, however periodicity was difficult to determine 

at very low beat frequencies and rotation rates. Occasionally non-asymmetric beat patterns were 

observed (transient beating and ‘unsticking’ quick motions). While these were avoided in all 

analyzed recordings, there is a possibility that recorded cells were actually performing non-

periodic oscillations. A photosynthetic organism, the Chlamydomonas flagellum has at least two 

modes of beating: (1) asymmetric, propulsive beats (examined and considered here), and (2) 

symmetric, ‘backwards’ beats to reorient or reverse the direction of cell body motion ([37], 

[119]). Recordings analyzed here were presumed to avoid any transient or symmetric behavior, 

despite observations of symmetric beating and waveform alterations in sample volumes, 

particularly at high viscosities. 
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Cells were recorded an average of 48 hours after dilution, however exact timing was varied 

based on observations of moving cells. Cultures with minimal rotating cells were either re-

diluted or left to grow for an additional amount of time, which may have slightly altered results. 

Finally, every effort was made to reduce bias in tracing and analysis, however the manual tracing 

of each flagellum frame presents an opportunity for error. This work has been a valuable 

teaching experience in optimizing tasks for humans and computers. Computers are great at 

sorting and storing large volumes of data, but are poor at recognizing patterns (such as flagellar 

location in subsequent frames). Humans can readily detect patterns and identify flagellum 

location in noisy images, but struggle to identify changes in curvature values and periodicity. 

7.2.2 Modeling Assumptions 

Many theories of dynein regulation have been proposed, however here we only investigate two 

basic systems: force regulation by sliding displacement of doublets and force regulation by 

transverse force between doublets. Both models were based on simplified systems of two doublet 

pairs. In reality, the axoneme has pseudo-symmetry of the nine doublets, along with a central 

pair that remains perpendicular to the bend plane [120], [121]. 

The models of dynein regulation analyzed here only consider a general shear force and assumed 

shear stiffness, unspecified by individual axonemal components. This approach certainly lends 

insight to force production, but doesn’t specify actions of individual motor proteins or even 

general classes, such as inner vs outer dynein arms. 

Finally, the axoneme is a complex structure not only circumferentially but also longitudinally 

(structural variations also exist within specific species examined). While we have considered the 

flagellum as a continuous, homogeneous beam, the composition of the axoneme actually varies 
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over its length [122]. The current models do not incorporate any variation in stiffness or 

composition along the length of the flagellum. 

7.3 Future Work 

7.3.1  Non-Periodic Oscillations 

Quantification of non-periodic processes remains a promising area of study. With much higher 

time-resolution imaging systems a dense sampling of behavior will allow investigation of 

symmetric beating and perhaps the transitions from symmetric to asymmetric beating modes. 

7.3.2 Model Validation 

Mathematical models of flagellar bending have yet to be examined with respect to higher loading 

conditions. The experimental and computational work associated with this thesis provides a 

database for comparison between simulated and observed flagellar beats. Consideration of 

specific dynein components and identified force-velocity curves may be incorporated into a more 

complex model in an attempt to understand the relative contributions of individual dynein 

motors. 

7.3.3 Clinical Diagnostics 

On a broader scale, this research is focused on trying to understand flagellar beating but may also 

aid the development of fast, automated, clinical diagnostic tools. 

The extension of quantitative waveform analysis to human cilia has been a subject of continued 

research. Key limitations are the 3-dimensional nature of the ciliary beat and difficulty in 

maintaining culture conditions conducive to physiologic beating. Of the tracheal epithelia 

analyzed so far, cilia display much more heterogeneous beat patterns. 
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7.3.4 Microfluidics 

Understanding Stokes flow mechanics may provide useful feedback for design of microfluidics 

systems. It is feasible that the active biological control of dynein motors could have applications 

beyond Chlamydomonas. It is likely that the observed automatic switching and bend propagation 

is tuned to the length scale of these organelles. 

7.3.4 Outlook  

The investigation of flagellar beating in response to high mechanical loading and structural 

variation provides a database of information to validate and critique models of beam oscillation. 

Understanding how these systems of motors work and how they fail provides insight to the 

underlying mechanisms of motor protein activity.  
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